開放特許活用例集
特許流通データベースの開放特許を使ったビジネスアイデア集
2008-Ⅱ
<table>
<thead>
<tr>
<th>ページ</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>掲載ビジネスアイデア一覧</td>
</tr>
<tr>
<td>2</td>
<td>成約事例の紹介</td>
</tr>
<tr>
<td>3</td>
<td>開放特許活用例集は開放特許を使ったビジネスアイデア集です</td>
</tr>
<tr>
<td>4</td>
<td>開放特許の活用のすすめ</td>
</tr>
<tr>
<td>5</td>
<td>開放特許を使うには</td>
</tr>
<tr>
<td>6</td>
<td>開放特許活用例集使用にあたっての注意事項</td>
</tr>
<tr>
<td>7</td>
<td>ビジネスアイデア（詳細目次P〜参照）</td>
</tr>
<tr>
<td>8</td>
<td>開放特許活用にあたっての支援施策</td>
</tr>
<tr>
<td>ライセンス情報番号</td>
<td>ビジネスアイディア</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>□□□□□□□□□□□□□□</td>
<td>精密な構成で微弱磁界を高精度に検出できる磁界センサ</td>
</tr>
<tr>
<td>□□□□□□□□□□□□□□</td>
<td>微生物を完全に処理するための電気式浄水装置</td>
</tr>
<tr>
<td>□□□□□□□□□□□□□□</td>
<td>ジャスパーでおいしいパンやケーキができる</td>
</tr>
<tr>
<td>□□□□□□□□□□□□□□</td>
<td>視覚障害を一時的に抑制する装置を検知して視覚障害を軽減する装置</td>
</tr>
<tr>
<td>□□□□□□□□□□□□□□</td>
<td>狭い場所で入射光で方向転換が可能なトランシクター</td>
</tr>
<tr>
<td>□□□□□□□□□□□□□□</td>
<td>先端部が不確定時には圧縮、使用時には設定が可能に超音波ドライブラジアクタ及び検出具</td>
</tr>
<tr>
<td>□□□□□□□□□□□□□□</td>
<td>高性能光学式水素検知用酸素タングステン薄膜を成膜時の基板温度を利用してスパーカ法にて得る</td>
</tr>
<tr>
<td>□□□□□□□□□□□□□□</td>
<td>簡単構造により、水素発生方向とほぼ直角に、放射状に細細可で検出できる放射性物質測定装置</td>
</tr>
<tr>
<td>□□□□□□□□□□□□□□</td>
<td>液中に行方を確認した水素が液体と相互作用を及ぼすときに生じる放射光の解析方法</td>
</tr>
<tr>
<td>□□□□□□□□□□□□□□</td>
<td>パイプの仕切りに板付け、衝撃事故時の腕部損傷を防止</td>
</tr>
<tr>
<td>□□□□□□□□□□□□□□</td>
<td>不平衡荷重にも対応できる三相□□フィルタ付インバータ</td>
</tr>
<tr>
<td>□□□□□□□□□□□□□□</td>
<td>白色発光の再現性・白子の安定性が高い散光□□発光</td>
</tr>
<tr>
<td>□□□□□□□□□□□□□□</td>
<td>お酒と共に花をたしなむ「花を食べし鮮やか」</td>
</tr>
<tr>
<td>□□□□□□□□□□□□□□</td>
<td>衝撃吸収特性に優れ、動的変形時に大きなエネルギーを吸収する発泡材製衝撃吸収材</td>
</tr>
<tr>
<td>□□□□□□□□□□□□□□</td>
<td>ゲームなどの仮想空間構築技術であり、利用者に風圧を与え、臨床感を高める</td>
</tr>
<tr>
<td>□□□□□□□□□□□□□□</td>
<td>高い摩擦係数を備え、様々な製品の製品部材として用いることができる部材</td>
</tr>
<tr>
<td>□□□□□□□□□□□□□□</td>
<td>本発明の光膜製品を、腫瘍組織に集積させて、レーザー光を照射すれば、腫瘍組織を壊死にする高い増幅効果</td>
</tr>
<tr>
<td>□□□□□□□□□□□□□□</td>
<td>室内環境で利用可能な光触媒</td>
</tr>
<tr>
<td>□□□□□□□□□□□□□□</td>
<td>老人や病に優しく、効果的な病の連携のリハビリ装置</td>
</tr>
<tr>
<td>□□□□□□□□□□□□□□</td>
<td>曲げても折れても割れない、しなやかな天然木の木製板</td>
</tr>
<tr>
<td>□□□□□□□□□□□□□□</td>
<td>腐食性液体にも対応できる保存容器はさらに耐液体測定装置</td>
</tr>
<tr>
<td>□□□□□□□□□□□□□□</td>
<td>竹炭ミネラルウォーターの相場時間、量産製造法</td>
</tr>
<tr>
<td>□□□□□□□□□□□□□□</td>
<td>楽への日常でなくても絶えず活動できるシンプルな吊り具</td>
</tr>
<tr>
<td>□□□□□□□□□□□□□□</td>
<td>常緑植物に吸収エネルギーを吸収できる建築構造物の素材を製造する</td>
</tr>
<tr>
<td>□□□□□□□□□□□□□□</td>
<td>対象物を複数の部分に分けて一度に最も収納できる施設システム</td>
</tr>
<tr>
<td>□□□□□□□□□□□□□□</td>
<td>□□時間およびプランニング時間を組み入れた形状記憶合金アクチュエータの制御方法</td>
</tr>
<tr>
<td>□□□□□□□□□□□□□□</td>
<td>光を用いた花の開花度の自動判別装置</td>
</tr>
<tr>
<td>□□□□□□□□□□□□□□</td>
<td>アルカリ現像でエッチング、微細加工可能なレジスト</td>
</tr>
<tr>
<td>□□□□□□□□□□□□□□</td>
<td>魚などの寄生する寄生虫の駆除や水道の除藻ができる</td>
</tr>
<tr>
<td>□□□□□□□□□□□□□□</td>
<td>鉄の防錆から薄化を出し、切断面を塗布する</td>
</tr>
<tr>
<td>□□□□□□□□□□□□□□</td>
<td>屋根を太陽の直射日光から保護し、自然通風冷却により屋根が高温になるのを防止する屋根の構造</td>
</tr>
<tr>
<td>□□□□□□□□□□□□□□</td>
<td>プレートに固定される複数のパイプの交差角を可変にする金具により、パイプ結合構造を簡素化する</td>
</tr>
<tr>
<td>□□□□□□□□□□□□□□</td>
<td>持装部品の満、クラックの補修、雑草生育防止方法および装置</td>
</tr>
<tr>
<td>□□□□□□□□□□□□□□</td>
<td>革プラスチックを接触溶解方法・装置で石油資源とする技術</td>
</tr>
<tr>
<td>□□□□□□□□□□□□□□</td>
<td>多種多様な長さの棒を簡単に調整して、安定した状態で収納できる棒立て</td>
</tr>
<tr>
<td>□□□□□□□□□□□□□□</td>
<td>受け皿等を使用する必要が無く、内容物が無くなった後において植物栽培用器として使用することができる</td>
</tr>
<tr>
<td>□□□□□□□□□□□□□□</td>
<td>小麦や葉麦のアレルギーが無い、米□□□□の種とウンピを製造</td>
</tr>
<tr>
<td>□□□□□□□□□□□□□□</td>
<td>製造工場を環境化して、地球環境にやさしい、ピース状のボリューム製造方法</td>
</tr>
<tr>
<td>□□□□□□□□□□□□□□</td>
<td>太陽光でも室内光でも機能を発揮する光触媒</td>
</tr>
<tr>
<td>□□□□□□□□□□□□□□</td>
<td>コスト増加およびサイズ増大のない多色原色フルカラー□□□□を提供する</td>
</tr>
<tr>
<td>□□□□□□□□□□□□□□</td>
<td>支援受付基盤に弾性フレームをつける支援を高め効率化された回転アーム支軸装置に簡便トネル</td>
</tr>
<tr>
<td>□□□□□□□□□□□□□□</td>
<td>真空容器で固定した表面にトリリンジメチオール誘導体の高分子薄膜を生成する</td>
</tr>
<tr>
<td>□□□□□□□□□□□□□□</td>
<td>鮮明な色合いの焼きリゴの製造方法で、果実を除去して味付後、特殊オーブンで焼き上げ、冷凍、真空包装する</td>
</tr>
<tr>
<td>ユーザー業界</td>
<td>登録者名</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>独立行政法人科学技術振興機構</td>
<td>有限会社富山エンジニア</td>
</tr>
<tr>
<td></td>
<td>社団法人農林水産技術情報協会</td>
</tr>
<tr>
<td></td>
<td>高村 春男</td>
</tr>
<tr>
<td>早稲田大学産学官研究推進センター</td>
<td>独立行政法人日本原子力研究開発機構</td>
</tr>
<tr>
<td></td>
<td>学校法人東京理科大学</td>
</tr>
<tr>
<td></td>
<td>学校法人慶應義塾</td>
</tr>
<tr>
<td></td>
<td>財団法人名古屋産業科学研究所 中部</td>
</tr>
<tr>
<td></td>
<td>財団法人鉄道総合技術研究所</td>
</tr>
<tr>
<td></td>
<td>学校法人三育社</td>
</tr>
<tr>
<td></td>
<td>株式会社北岡本店</td>
</tr>
<tr>
<td></td>
<td>公立大学法人首都大学東京</td>
</tr>
<tr>
<td></td>
<td>学校法人金沢工業大学</td>
</tr>
<tr>
<td></td>
<td>有限会社カートンパーソンセンターセンター</td>
</tr>
<tr>
<td>宇都宮大学</td>
<td>独立行政法人物質・材料研究機構</td>
</tr>
<tr>
<td>有限会社日中高木商会</td>
<td>高知県庁</td>
</tr>
<tr>
<td>日本大学産学官学連携知財センター</td>
<td>若槻 群</td>
</tr>
<tr>
<td>株式会社山城組</td>
<td>森 美喜雄</td>
</tr>
<tr>
<td>財団法人生産技術研究奨励会</td>
<td>鳥取大学 産学地域連携推進機構</td>
</tr>
<tr>
<td>木下 茂</td>
<td>国立大学法人岡山大学</td>
</tr>
<tr>
<td></td>
<td>尾崎 吉德</td>
</tr>
<tr>
<td>国立大学法人東京工業大学</td>
<td>財団法人ひろしま産業振興機構</td>
</tr>
<tr>
<td></td>
<td>有限会社大分</td>
</tr>
<tr>
<td>国立大学法人岩手大学</td>
<td>株式会社ビジョナリー・ライセンシング・クラブ</td>
</tr>
<tr>
<td></td>
<td>財団法人北九州産業学術推進機構</td>
</tr>
<tr>
<td></td>
<td>西浦 志比兵衛</td>
</tr>
<tr>
<td></td>
<td>株式会社サワヤ</td>
</tr>
<tr>
<td></td>
<td>石川 久夫</td>
</tr>
<tr>
<td></td>
<td>有限会社ピーエスケイ</td>
</tr>
<tr>
<td></td>
<td>財団法人北九州産業学術推進機構</td>
</tr>
<tr>
<td></td>
<td>井澤 弘子</td>
</tr>
<tr>
<td>有限会社コープガスト</td>
<td>有限会社レイク・ルイーズ</td>
</tr>
<tr>
<td></td>
<td>株式会社環境工学</td>
</tr>
<tr>
<td></td>
<td>国立大学法人京都大学</td>
</tr>
<tr>
<td></td>
<td>国立大学法人弘前大学</td>
</tr>
<tr>
<td></td>
<td>佐久間 一郎</td>
</tr>
<tr>
<td>地方独立行政法人岩手県工業技術センター</td>
<td>鶴救 久助</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
成約事例の紹介

<table>
<thead>
<tr>
<th>開放特許活用例集</th>
<th>塗膜が丈夫で塗りムラがなく、紫外線や赤外線を遮蔽する塗装方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>ライセンス番号</td>
<td>特許番号 第号号号号号号号号号</td>
</tr>
</tbody>
</table>

【概要】
従来紫外線や赤外線を遮蔽する物質を微粉末化してバインダーと共に塗装する技術はあるが、塗装面積が広い場合にスプレーを用いて適切な作業が行なえるものではなかった。
本発明はこの点を改善したもので、スプレーガンの吐出ノズルの先端口径を比較的大きくして液を大きくすること、しかもそのために塗液の粘度を高めるのに多価アルコールを一定量配合することで解決しようとするものである。塗液の粘度が低い場合、高圧力で吐出ノズル径を大きくして微粒子化して噴霧することとなり、吐出量が小さいため重ね塗りが必要になる。このような塗膜の強度が低下し紫外線や赤外線の遮蔽性能が維持できなくなった、あるいは作業条件によって塗布ムラが生じ斑点や白化が生じたりするという問題がある。
本発明の配合と吐出ノズルを調整することにより、1回塗布で均質な紫外線/赤外線遮蔽塗膜が形成でき、しかも透明性も十分確保できる。この作業には市販のスプレーガンなどの塗装機を使用できるが、おお好ましい塗装条件としては、スプレーガンの内側からは塗液を、外側からは週辺を囲むようなエアカーテンを形成するエア吹き出し口を備えることにより、塗液のムダが減り、作業者の健康障害要因も軽減できる。

【経緯】
ライセンサーの（株）フミンは、本発明について、各地の企業に実施許諾の実績を持っていたが、また、大幅削減に繋がる技術として、マスメディアに取り上げられる機会も多く、自社でもホームページへの掲載、展示会等への出展、講演等にて積極的に自社技術の紹介を行ってきた。
一方、ライセンシーのクレハ建設（株）は、同じ県内にある建築・土木・一般住宅・ブランド建設等を手掛ける建設会社で、同社では近年環境関連技術を積極的に技術導入していた。そのような中で、（株）フミンの技術を新聞で知り、同社のホームページで技術内容を閲覧、同社の講演会にも出席し、事実の技術を目の当たりにするなどして、自社の事業の方向性とも一致する技術であることから技術導入を決した。
（株）フミンはクレハ建設（株）との契約書締結に際して、契約書作成の支援を特許流通アドバイザーに依頼し、特許流通アドバイザーが契約書作成等の支援を行って行った結果、契約締結に至ったものである。
クレハ建設（株）は、既に同社のホームページに本発明を掲載し、今後、顧客に対して新たな建築物への付加価値として提案して行くこと。
開放特許活用例集は開放特許を使ったビジネスアイデア集です

開放特許とは
特許権は、膨大な研究開発投資のもと、技術調査・研究開発活動に大きな労力をさした上に、特許庁の厳正な審査を経て生まれる優秀な技術資産といえます。こうした特許の中で、他者に開放（ライセンス契約・譲渡など）する意思のあるものを「開放特許」と言います。

開放特許活用例集とは
開放特許活用例集は、特許流通データベースに登録されている開放特許の中から事業化の可能性が高い案件を選定し、これら有用な開放特許の有効利用を目的としたビジネスアイデア集です。

開放特許活用例集の掲載案件
○○○○○○版では、特許流通データベースに登録されている開放特許のうち、以下の基準で○件を特許流通アドバイザー等に推薦していただきました。

・権利の残余期間が推薦時に十分であること
（特許については残余期間5年以上、実用新案については同3年以上、出願中の案件はこの限りではありません。）
・技術移転に適していること
・中小・ベンチャー企業が事業化に取り組みやすいもの

また各ビジネスアイデアは、知的財産権の取引を業とされている方々が作成いたしました。作者については最終買（価格）をご覧ください。

特許流通データベースとは（特許流通データベースへの登録、閲覧は「無料」）
特許流通データベースは企業や研究機関・大学等が、保有する提供意思のある特許をデータベース化し、「ライセンス情報」として、インターネットで提供するサービスです。どなたでもご利用いただけます。閲覧するための特別なソフトや会員登録の必要もございません。登録されているライセンス情報等は毎週データ更新を行っています。この開放特許活用例集でご紹介させていただいた掲載案件は、特許流通データベースに登録されている開放特許のうちの一部です。
特許流通データベースには、以下のいずれかのアドレスでアクセスできます。

独立行政法人工業所有権情報・研修館ホームページ、または特許流通促進事業ホームページにアクセスし、「特許流通データベース」の項目をクリックします。

ライセンス情報

入力画面

検索結果画面
開放特許の活用のすすめ

この開放特許を活用することにより、製品のライフサイクルが短縮している昨今において

・研究開発にかかる時間と費用を、リスクマネジメントすることができます。
・既に成立している技術をもとに製品化を検討できるため、マーケティングが容易になります。

その結果、
・異なる組織が連携することにより、新しい製品・技術が開発されます。
・お互いの足りない部分を補完し合う事により、より強固な体制が築けます。

開放特許を活用して、戦略的連携による技術革新を！

開放特許を使うには

この開放特許活用事例集を見て、興味がある開放特許があったときは、次のような手続きをとることが可能です。

１ 各開放特許の問合せ先に直接連絡する。
掲載された開放特許について、問合せ窓口が各ページに記載されていますので、こちらに直接連絡することができます。

２ 特許流通アドバイザーに連絡する。
特許流通アドバイザーは、独立行政法人工業所有権情報・研修館の委託を受け、（社）発明協会から地方自治体、□□□、経済産業局に派遣している技術移転をお手伝いするアドバイザーです。開放特許の特許権者との橋渡し、技術移転に関することについて、無料でご相談いただけます。（秘密厳守）
お近くの特許流通アドバイザーの連絡先は□□□□に掲載されていますのでご覧ください。
開放特許活用例集
使用にあたっての注意事項

開放特許活用例集をお使いになるにあたっては、以下のことに十分ご注意下さい。

<table>
<thead>
<tr>
<th>開放特許といっても特許権ですから、その使用については特許権者の了解が必要です。（ライセンス料の支払い等も含みます。）</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>出願中案件の場合、審査の結果、出願が拒絶される可能性があります。</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>事業化にあたっては、他の権利に抵触する可能性やその他の規制もありますので、最終的な事業化には十分な調査（先期調査等）が必要です。</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>開放特許活用例集はあくまでもビジネスアイデア集です。掲載されたビジネスアイデアの内容や事業の成功を保証するものではありません。</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>本冊子の性格上、ここに掲載される事業化情報は完全な調査に基づくものではありません。従って部分的には情報が不足している箇所もありますので、事業化にあたっては、その内容を十分ご確認ください。</th>
</tr>
</thead>
</table>
簡略な構成で微弱磁界を高精度に検出できる磁界センサ

出願人：独立行政法人科学技術振興機構

本発明は、検出コイルが巻かれた磁性体に電流を流して磁界を検出する直交フラックスゲート型の磁気センサにおいて、特に磁性体の磁気異方性に基づく検出精度の低下を防止して微弱磁界を高感度かつ高安定に検出する磁気センサに関するものである。従来は検出磁界が存在しない場合であっても、励磁電流による励磁磁界が存在する時には検出コイルに誘起電圧が現れ、磁界センサのオフセットになり、温度と共に変動すればドリフトを生じるという課題があった。

本発明の磁界センサは、所定の長さの磁性体からなる磁心と、磁心に巻かれた検出コイルとを組み、磁心に励磁電流を流して検出コイルに誘起される誘起電圧により微小磁界を検出する。磁心には正または負の一方にバイアスされた脈流からなる励磁電流を流し、検出コイルは、磁心に印加される検出磁界が存在せず、且つ、励磁電流による励磁磁界が存在するときに発生する誘起電圧を相殺し、被検出磁界が存在し、且つ、励磁電流による励磁磁界が存在するときに被検出磁界で誘起される誘起電圧を出力するものである。

本発明においては、真の検出対象である微弱磁界を磁心および検出コイルの特性・構成に依存して発生する不必要な誘起電圧の影響を受けないことなく検出できることがとなり、検出精度を向上させ、且つ、より安定した検出が実現できる。

楽に検出できる磁気センサ

ユーザーや界

活用アイデア

生体磁気（脳磁界）検出し応用
- 呪縛者などにおける脳機能低下の診断に使用できる磁界を利用した脳機能の診断に応用する

地磁気センサに応用
- 地磁気センサを用いる際に、センサがどちらを向いているかを検出する地磁気センサを応用

鋼材非破壊検査に応用
- 鋼材非破壊検査装置に使用する磁気センサとして応用

非接触電流計に応用
- 金属製電流を測定可能な非接触電流計の磁界センサとして応用

磁気センサには○○○○型、○○フラックスゲート型、○○○磁気抵抗素子、○○ホール効果型などがある。本発明の磁気センサは○のタイプである。

○は○○○テストラ以下微小磁界センサとして医用・生体磁気に応用に、○は○○○○○テストラの微小磁界センサとして地磁気、生体磁気に検出しに、○、○は変位検出しもに使い分けられている。本発明はフラックスゲート型磁気センサの検出精度向上、安定化に寄与する技術である。

しかし、本発明の範囲では磁心に検出コイルを巻きつけるなどの作業が必要であり、小型化、低価格化には限界がある。一方、半導体加工技術を用いてセンサヘッドの薄膜化を実現する技術が紹介されている（特許○○○○○○）。両者を組み合わせると、従来数○○だった大きさが○○程度に小さくなり、超小型、低価格のフラックスゲート型磁気センサが実現でき、用途が急激に広がると期待される。
特許情報

・権利存続期間：出願中
・実施段階：実施無し
・技術導入時の技術指導の有無：応相談
・ノウハウ提供：応相談
・ライセンス制約条件：許諾のみ

参考情報

・関連特許：あり
・○○：○○ ○○

皆様からのお問合せを、お待ちしています。

□ この特許の問合せ先 □

独立行政法人科学技术振興機構
技術移転促進部 シーズ展開課
係長 大木 章夫
〒○○○○○○○○
東京都千代田区四番町○○○○○○
○○〇
微生物を死滅させ藻類の繁殖を防止できる電気式浄水装置

特 許 権 者：有限会社富山エンジニア

プールや温泉、ウォーターパーク等の浄水装置として、脚部に配置して利用できる電気式浄水装置で、脚部を3層に分けて電気絶縁性の基板の中央部に、基板から垂下するように取り付けた鋼板と鋼板柵からなる円筒状の溶解性陽極棒と、これを同心円状に取り囲むように螺旋状金属パイプからなる陰極棒を配置し、両極間の水の移動にあわせて制御され流された直流電流を両極間間に流す直流電流源で、通電により溶解性陽極棒から発生する金属イオンで、水を殺菌処理する。陰極は一般にステンレススチールなどにより構成され、通電により鋼板と鋼板柵から成る溶解性陽極棒から鋼板と鋼板柵の金属イオンが放出され、薬品やバキュライトの成長を防ぐとともに、電極に近づく接触することにより水中に在する微生物を電気的に死滅させる。

このように本発明は、電気イオン浄水の2つを合体させたものであり、一定電圧恒壓制御と電圧変換制御のいずれかの方式を用い、水量にあわせて電圧および電流を制御しながら、浄化が必要な地域の金属イオンを溶解陽極棒から放出するよう制御する。また、陰極をスプリングコイル形状とすることにより、水の電極との接触面積を大きくし微生物の電極破壊効果を高めるとともに、陰極螺旋パイプのスプリング効果によるねじれ効果を利用して陰極に曝される浮遊物や堆積物を取り除くことが容易となり保守性も向上する。

ユーザー業界

食・生活

活用アイデア

水耕栽培水の浄化

①水耕栽培で使用する養液による細菌の増殖に対して、銅イオン、亜鉛イオンによる殺菌方法を用いることにより、薬剤による殺菌の場合に発生する管の損傷などの変化を防ぎ、さらに殺菌剤の有効性を向上させるもの。

魚介類飼育用水槽の処理

①直腸の飼育に使用する飼育槽の水を減菌する。収穫、飼育、貯蔵、販売などを行うために、魚介類飼育用水槽の水の浄化を行う。changed into Japanese

薬剤を使用せず、人体に無害な銅イオン、亜鉛イオンのみを用い、電気とイオン浄水を効率よく合体させた本発明は、ユニット化された簡便な構成と清掃・保存の利便性から、屋内、屋外を問わず、小規模から大規模までの広範囲の水処理を行う施設で浄化殺菌に利用できる。比較的大规模な施設としては、魚介類の養殖場や生鮮、水族館などに用いて藻類やバキュライトの繁殖を抑え水質を改善できる。また、大腸菌、緑膿菌、肺炎菌、枯草菌などの効果的殺菌があることから、病院内および給水設備や歯科診療所の給水の浄水など医療施設も用いて院内感染の防止に有効である。また、家庭用の小型化施設としては、水洗トイレの貯水槽内の浄化に特有のシャワートイレのようにも使用できる。
特許情報

- 権利存続期間：丁年 ヶ月（平 0000-0000）
- 実施段階：実施有り
- 技術導入時の技術指導の有無：応相談
- ノウハウ提供：応相談
- ライセンス制約条件：許諾のみ

<table>
<thead>
<tr>
<th>出願番号</th>
<th>特願 0000000000000</th>
</tr>
</thead>
<tbody>
<tr>
<td>出願日</td>
<td>平 0000年00月00日</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>公開番号</th>
<th>特開 0000000000000</th>
</tr>
</thead>
<tbody>
<tr>
<td>公開日</td>
<td>平 0000年00月00日</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>特許番号</th>
<th>特許 0000000000000</th>
</tr>
</thead>
<tbody>
<tr>
<td>登録日</td>
<td>平 0000年00月00日</td>
</tr>
</tbody>
</table>

参考情報

- 特許流通アドバイザーによる推薦
- 関連特許：なし
- 特許：なし

参照可能な特許流通支援チャート
- 16年度：化学24 生物農薬
- 17年度：一般23 水耕栽培（植物工場）

皆様からのお問合せを、お待ちしています。

- この特許の問合せ先

有限会社富山エンジニア
営業統括 金山 和信
〒 0000-0000
富山県富山市米田町 0-0-0
電話番号 000-0000-0000
ファクシミリ 000-0000-0000

もしくはお近くの特許流通アドバイザー（000-0000をご覧下さい）にご連絡下さい。

特許流通データベース情報

- タイトル：固定型電気式浄水装置
- ライセンス番号：0000000000000
- サイトにてお問い合わせいただけます。
ジャガイモでもおいしいパンやケーキができる
特 許 権 者：独立行政法人農業・食品産業技術総合研究機構

本発明、ジャガイモを改質して通常は使用されるのないケーキやパンなどの嗜好品にも使えるようにするものである。

ジャガイモは広く世界で栽培され、特に北ヨーロッパではかつて救急食品としてたびたび飢餓を救った優れた食品であるが、それ自体がデンプンをマルトース（麦芽糖）に変えること・アミラーゼをほとんど持っていないため、調理しても甘みを持たないという特性から、ほとんど主食や副食として使われない。

そこで本発明ではこのジャガイモにアミラーゼ類を多く含む他のイモ類や市販のアミラーゼ類を適量添加してジャガイモデンプンを分解処理することにより風味や食感を改善する方法を示すものである。

特にここでは通常のジャガイモの風味の薄い品種を用い、熟成後にこししたマッシュにイモ類や穀物の粉、あるいはアミラーゼ剤を適量混ぜて、ある時間反応させ、スイートポテト、シュフォンケーキ、アイスクリームなどに加工し、それぞれに適したアミラーゼ類の混合割合をコンペントに実験により割り出している。

その結果はパンへの応用でも従来のジャガイモの混入とは異なり、飛躍的な改善がなされることが分かった。

ユーザーや界
活用アイデア

ジャガイモマッシュの改質
①本発明の手法を使って改質されたジャガイモマッシュを製造し、各種食品に適用するもので、アミラーゼ剤の製造と供給
②ジャガイモマッシュの改質に適したアミラーゼ剤を提供する
改質ジャガイモマッシュを使った新製品
①改質したジャガイモマッシュを使った、新しい食感・風味を持つ菓子・パン類を開発する

用語解説
アミラーゼ
消化を行う酵素の一種で、デンプンなどの糖類を分解する働きがある

官能評価
計測器によらず、人の感覚によって対象物の性質や性能を主に人的言葉によって評価すること

糊化デンプン
デンプンに水分を加えて加熱しデンプンがいわれる状態、食物類のデンプン類似粘性状態の状態

原稿作成者：吉田 邦雄
システム・インテグレーション株式会社
特許情報

・権利存続期間： □□□年 □ヶ月（平 □□□□□□□□）
・実施段階：実施無し
・技術導入時の技術指導の有無：有り
・ノウハウ提供：応相談
・ライセンス制約条件：許諾のみ

参考情報

・関連特許：あり
・□□：□□□□ □□□□

皆様からのお問合せを、お待ちしています。

この特許の問合せ先
社団法人農林水産技術情報協会 特許情報部
部長 小川 一貫
〒 □□□□□□
東京都中央区日本橋兜町 □□- □ 製粉会館 □□
☎ □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□
☎ □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□

もしくはお近くの特許流通アドバイザー（□□□□をご覧下さい）にご連絡下さい。
視覚障害をもつ被験者の視線を検知して視覚障害領域を画面に客観的に表示して視覚能力向上を計る訓練装置

出願人：独立行政法人情報通信研究機構

視覚障害の症状の中には、視野の一部にのみ視覚障害があって、物理的にはそれ以外の領域を見ることができるような症状がある。このような被験者には、「見えない」あるいは「見えにくい」と思い込んでしまうており、その意識を改革して、例えば視点をずらして見るといった訓練をする必要がある。そのような症状の被験者である視覚障害者の意識の障壁を取り除き、訓練し易い視覚訓練装置を提供することは困難である。

本発明は、視野の一部に障害がある被験者に対す視覚能力向上のための訓練装置を提供するものである。

視覚障害をもつ被験者の可視領域と視覚障害領域を示す視覚データを学習して得たものをおき、訓練時に具体的な訓練場面を表示する。この表示画面を観察する被験者の視線を検知して、表示画面上に視野データから得た可視領域と視覚障害領域を区別する色を表示する。これにより、自律的な訓練画面で視覚拡大の訓練すべき目標を客観的に具体的に明示して被験者を指導することができる。また、被験者の反応を自動判定して訓練指導者の代わりにすることにより、被験者単独でも視覚訓練を行うことができる。この結果、「見えない」あるいは「見えにくい」と思い込んでいた被験者の意識の障壁を取り除き、効果的に被験者の可視領域を拡大する訓練を行うことが可能となる。

福祉、障害者対策に関する国、地方自治体の施策は年々重要性を増しており、障害者の社会参加への意欲と社会の受け入れ態勢の整備も進展しつつある。このような社会情勢の背景にあって、本発明に基づく障害者を訓練し易い視覚訓練装置、さらには、障害者自身が一人で容易に訓練できる視覚訓練装置を提供できることは意味深く、経済的に成功可能な市場を形成できると推定される。

また、目線の検出技術に注目してみると、全く異なる分野への応用も考えられる。被験者が主にどこを見ているかで関心事の把握、その結果を受けて適切なサービスの提供を考えられる。デパートやスーパーの商品陳列なら、どれが最も注目されているかを掴むことで、売り上げが上昇している商品を示す。
特許情報

- 権利存続期間：出願中
- 実施段階：実施無し
- 技術導入時の技術指導の有無：応相談
- ノウハウ提供：応相談
- ライセンス制約条件：許諾のみ

| 出願番号：出願
| 出願日：
| 公開番号：特開
| 公開日：
| 特許番号：出願中
| 登録日：出願中

参考情報

- 関連特許：なし
- その他：

参照可能の特許流通支援チャート
- 15年度 電気20 遠隔医療・遠隔介護システム

皆様からのお問合せをお待ちしています。

- この特許の問合せ先

もし近くの特許流通アドバイザー(お問い合わせ箱をご覧下さい)にご連絡下さい。
狭い場所でも人力で方向転換が可能なトレーラー

特 許 権 者：高村 春男

トレーラートラックの積載部であるトレーラーの重心位置の底部、支持用油圧シリンダーを底部に対し
て垂直・水平方向に回転可能に取り付け、これにより、支持用油圧シリンダーがトレーラーを支えるときの垂
直方向と、トレーラーが走行するときに格納する水平方向に設定できるように構成する。支持用油圧シリン
ダーのロッド先端部にはトレーラーを安定に支持するための接地部材を備え、シリンダーとロッドは相互に
軸周方向に回転可能とする。以上のように構成される回転支持装置を用いて、トレーラートラックを逆方向
に方向転換するには、まずトラクターをトレーラーから切り離し、回転支持装置を垂直方向に伸ばして、ト
レーラーの全部の走行車輪を路面から浮かせて支え、これ回転中心として水平面内でトレーラーを θ 度
回転させ、その後、切り離ししたトラクターを移動させ
て前部に連結して方向転換が完了する。

本発明によれば、回転支持装置は、トレーラーを支
持するものであるので、下部に設けることができ、積
載部の構造に制約を受けず通常のものと同様に作るこ
とが可能であり汎用性に優れる。また、トレーラーを
方向転換させる際に、運転者一人でも容易に回転させ
ることができ、作業を簡単で短時間で行うことができ
る。さらにトレーラーの回転に必要な空間は回転面の
みであり、少なくとも片側はオーバーハングさせるこ
とができるため、狭い場所での方向転換が可能となる。

ユーザー業界

活用アイデア

道路カッターの方向制御

・回転支持装置を道路カッターに装
備し、舗装道路を切削しながら道
路の曲がり角を適当に左や右

農業用トラクターの回転制御

・各種アクチュエータを装着して耕
作や収穫を行う農業用トラク
ターに回転支持装置を装備し、耕
作の各回の農業の少ないエリアを

農業用トラクターの回転制御

・各種アクチュエータを装着して耕
作や収穫を行う農業用トラク
ターに回転支持装置を装備し、耕
作の各回の農業の少ないエリアを

構内への搬送車両の回転制御

・構内の通過車両、あるいは構内の幅
下等を有する構内の移動する

車輪を浮かした状態で車体長の半分だけの回転
半径で、且つ人力により容易に方向転換できる
本発明は、車体重量の大小を問わず広い適用領域
をもつ。回転面内の角度を任意に選べることから、道路
沿って作業する建築工事用車両、例えば、舗装
道路に用いる道路カッターなどに適用され
ば、道路の曲曲状態に合わせて直角や鈍角に方向
転換させることが容易となる。耕作や収穫などを行
う各種の農業機械に適用すれば、回転半径を要
せず方向転換が可能となるため、作業をしの少
ない農作業が実現できる。また、単なる方向転換の
みでなく、例えば、鉄道施設の保守・工事用機械
に接続して加減を変えて用いることが容易となる。}

用語解説

フルトレーラー
乘用車あるいは大型トラックなどの自動車に接続して運
用するトレーラーで、荷重はトレーラー自身で支える

セミトレーラー
トラクターが連結されて運転されることは前提とした構
造になっており、一般にトレーラー単体には前輪がない

油圧シリンダー
油圧ポンプで発生した油圧の動力を直線運動に換えて仕
事を行う。電気や機械に比べ重量物を動かすのに有利

原稿作成：山本 良一
トレーラーの方向転換の手順

通常の走行状態

トラクターを切り離しトレーラーを浮かせる

人手により水平方向に180度回転

トラクターを移動させる

移動させたトラクターをトレーに接続し回転支持装置を取り付け

特許情報

・権利存続期間：平成３年３ヶ月　平成２７年度
・実施段階：実施有り
・技術導入時の技術指導の有無：応相談
・ノウハウ提供：応相談
・ライセンス制約条件：譲渡または許諾

参考情報

・特許流通アドバイザーによる推薦
・関連特許：なし
・一覧：なし　一覧

皆様からのお問合せを、お待ちしています。

この特許の問合せ先

高村　春男
〒　888-8888
大分県日田市大字高瀬　番号-　
※熱線電話番号　※熱線電話番号

もしくはお近くの特許流通アドバイザー
(　をご覧下さい)にご連絡下さい。
先端部を不使用時には枠を閉め、使用時には面状に展開して上下両面方向に屈曲可能な医療用トラクタ及び棒状具

出願人：学校法人早稲田大学、岐阜県

体表の複数箇所に開けた穴から鉗子等の処置具や腹腔鏡を挿入し、患部近接の画像を医師がモニタで見ながら手術する腹腔鏡下手術を行う際に、邪魔になる膵器を横に移動し（圧排し）、体腔内に術野を確保する器具として、リトラクタと呼ばれる棒状具を用いる。従来の器具は面状の先端部分を窄めた状態で体内に挿入した後、握持部を握り締めることにより先端開閉部が棒状からヘラ状に開く構造となっており、複雑な形状の制御が困難であり、圧排面全体をロッド部に対して上下両方方向に屈曲させることができない欠点があった。

本発明は、開閉操作手段により先端部を閉閉動作させることができる、屈曲操作手段によって展開状態の先端部をロッド部に対して上下両面方向に自由に屈曲作動させることができる。新たな圧排動作にも対応可能な構造を採用し、先端部には着脱自在となるカバーを取り付けることにより、部材間に遮器や他の体腔内組織が挟み込まれるのを防止することができる。これにより、先端部を不使用時にコンパクトな状態にできる一方、使用時には体外側からの操作により、当該先端部を面状に展開して少なくとも上下両面方向に屈曲作動させることができる医療用リトラクタおよび棒状具を提供するものである。

用語解説

腹腔鏡下手術
体表に開けた複数の穴から鉗子等の処置具や腹腔鏡を挿入し、患部近接の画像を医師がモニタで見ながら手術する

医療用リトラクタ
先端部を窄めた状態で穴から体内に挿入した後、先端部分を面状に広げて邪魔なく膵器を横に移動する器具

非破壊検査
検査対象物に対して変形、破壊等の変化を問えないでその材料・製品の健全性を調べる検査方法の総称である
図1 本製品の医療用リトラクタ（棒状具）の構造図

11 先端部
12 カバー
14 ロッド部
15 後端部
18 中央部
20,21 サイド部材
23,24 横部材
27 通口片
61 前部ダイヤル
65 手縫い
66 後部ダイヤル

特許情報

- 権利存続期間：出願中
- 実施段階：実施無し
- 技術導入時の技術指導の有無：応相談
- ノウハウ提供：応相談
- ライセンス制約条件：許諾のみ

参考情報

- 特許流通アドバイザーによる推薦
- 関連特許：なし
- 購入：なし
- 参照可能な特許流通支援チャート

皆様からのお問合せを、お待ちしています。

・この特許の問合せ先

早稲田大学産学官研究推進センター
産学官研究推進センター
山本 定弘
〒 〒〒〒〒
東京都新宿区早稲田鶴見写真
電話 0123-456-789

もし近くからお近くの特許流通アドバイザー（ご連絡を承わって）をご連絡下さい。
高性能な光学式水素検知用酸化タンクステン薄膜を成膜時の基板温度を制御したスパッタ法にて得る

出願人：独立行政法人日本原子力研究開発機構

最近、石炭や石油等の化石燃料の大量消費による温室効果ガス（炭酸ガス）の放出削減策として水素燃料電池等の水素社会を実現する研究が多方面でなされており。しかしながら、水素は爆発を伴う可燃性のガスであり、取り扱いには十分なる安全工夫が必要とされる。このためには、微量といえども混入した水素ガスを高精度で安全に検知する安価な汎用型の水素検知センサの開発が必須である。従来のセンサは半導体表面の水素吸着による電気抵抗変化等で検知する方法が主流であり、電気接点でのスパークなどで水素ガスが着火発生する可能性を排除する工夫が必要であった。

本発明は、このような事情に鑑みてなされたもので、酸化タンクステンが室温で水素含有雰囲気気に触れると光学的な透過率が減少するという特性を利用しており、スパッタ法により酸化タンクステンの成膜時の基板温度を制御し、酸化タンクステンの結晶性を調節して優れた水素検知材料を提供することを目的としている。これによって、電気接点の着火源を有さず、水素ガスの検知方法を提供できるので、従来法に比べて汎用性および安全性が高い水素ガス漏洩検知装置の提供が可能になる。

今後、クリーンエネルギーとして水素の主な用途は家庭用や自動車用の分散型燃料電池で、その製造技術の開発が世界で進められている。「第 XX 回 原子力委員会資料（第2号）」によると水素の市場規模は 2020年度で XXX 百万円、2030年度で XXX 百万円である。（なお 水素価格は XXX→XXX 円/MJ; 原子力 XX 回資料 を XXX→XXX ○○(○○○○)）この製造技術の課題は、プロセス能力・水素の高品質化や操作性・制御性の向上および安全性の向上などである。

本発明の水素検知材料は室内温（XXX 相当）で機能を発することから、水素を取扱い装置、配管等内部の水素濃度や水素漏洩等の検出が可能で、操作性・制御性の向上および安全性の向上にある有効である。特に本発明の水素検知材料の表面にはパラジウムや白金等の触媒層を形成させて必要に応じて検出感度の向上を付与することもできる。このように本発明は今後の水素市場分野で大いに期待できる。

キーワード：水素検知材料 / 酸化タンクステン / スパッタ法 / 基板温度制御 / 水素ガス
特許情報

・権利存続期間：出願中
・実施段階：実施無し
・技術導入時の技術指導の有無：応相談
・ノウハウ提供：応相談
・ライセンス制約条件：許諾のみ

出願番号：特願
出願日：平成末年

公開番号：特開
公開日：平成末年

特許番号：出願中
登録日：出願中

参考情報

・関連特許：なし
・特許区分：なし
・参照可能な特許流通支援チャート：17年度 一般20 水素製造技術

皆様からお問合せを、お待ちしています。

この特許の問合せ先

独立行政法人日本原子力研究開発機構
産学連携推進部 業務課
〒 〒 〒 〒
茨城県那珂郡東海村白方白根 〒 〒
☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎
・お問い合わせは上記電話番号またはEメールでお問い合わせください。

もしくはお近くの特許流通アドバイザー (☎ をご覧下さい)にご連絡下さい。
簡単構造により、粒体流を噴射方向とほぼ直角に、放射状に吹き付け可能

出願人：学校法人東京理科大学

圧縮した気体とともに粒体を管内の表面に吹き付け
る加工法においては、様々な物質のコーティングや高
精度な研磨加工が必要とされてきたが、複雑な形
状の管内表面に粒体を均一に、効率良く吹き付けるこ
とが大きな課題であった。本発明による装置は、ノズ
ル部、気体と固気二相流（粒体、気体）の供給部およ
びそれらを接続する可換性チューブから構成される。
さらにノズル部は、内管（気体）と外管（粒体、気体）
およびそれらの噴射口前方において塗射された流体を
受け止める円形の衝突板と内管の内側で衝突板を支持
固定する多孔板等により形成される。また、供給部の
生成容器では固気二相流の旋回流を生成する。これら
により、塗射された流体の気体と粒体は、衝突板への
衝突の際に噴射口からの噴射方向とほぼ直角方向に曲
れられ、噴射口周囲にあるパイプ内壁等の対象物に放
射状に吹き付けられる。このため、対象物表面に粒体
を均一、正確に、効率良く吹き付けて精密な研磨加工
や塗装が可能となる。さらにノズル部と供給部を可換
性のあるチューブで接続しているため、従来難しかっ
た溝曲パイプや複雑形状の内壁表面の加工等も容易で
ある。

本発明は、パイプ内壁等に粒体を吹き付けるプラ
スト装置等において、ノズルからの気体と粒体
を噴射方向とほぼ直角に放射状に吹き付けるよう
にしたもので、簡単に構造で精密な加工や塗装が可
能である。このため、その用途は機械加工をはじ
め様々な分野に適用でき、機械用部品の複雑形状の
孔部や凹部、溝曲パイプの内壁等の精密研磨や精
密塗装、住宅やビル内の水処理等の精密な配管系
の清掃や補修に適用可能である。また、最近注目
となっている電力や化学プラントの配管内部のひ
び割れ、腐食、欠陥等についても、光ファイバ等
による内視鏡カメラとの併用により、精密な検査、
補修の実施等にも適用できる。このように、産業
用のみならず一般民需用にも適用が期待でき、そ
の市場も広範囲である。

用語解説

プラスト装置
圧縮した空気とともに粒体を対象物に吹き付けて、対象
物の表面を研磨、清掃を行う装置

固気二相流
固体と気体を混合させた流れのことであり、ブラスト装
置では固体として研磨剤等の粒体を用いる

プラント
工場等の設備のこと。プラント用配管とは、化学工場の
製造設備用や発電所の冷却水用の配管等のことをいう

ユーザー業界

活用アイデア

機械部品等の研磨、塗装
①機械部品の複雑形状の孔部や凹
部、溝曲パイプ内壁等の表面に研磨
粒体や塗装剤を吹き付け、精密な
研磨や塗装が容易になる

プラント用配管の検査
①光ファイバ等による内視鏡カメラ
との併用により、複雑なプラント
配管内部のひび割れ、腐食、欠陥
の精密検査と補修が容易できる

水処理配管の清掃
①住宅やビル等の建物の下水配管
内部に清掃剤を吹き付け、水垢や
汚れを簡単に除去することができる
簡易な内視鏡カメラを併用す
れば、より効果的なる

原稿作成：山本 良一
特許情報

・権利存続期間：出願中
・実施段階：実施無し
・技術導入時の技術指導の有無：応相談
・ノウハウ提供：応相談
・ライセンス制約条件：譲渡または許諾

・出願番号：特願 88554913
・出願日：平成28年1月

・公開番号：特開 2019-111246
・公開日：平成29年1月

・特許番号：出願中
・登録日：出願中

参考情報

・関連特許：なし
・○○：○○○○ ○○○○

皆様からのお問合せを、お待ちしています。

この特許の問合せ先:

学校法人東京理科大学
科学技術交流センター
太地 昭義
〒113-8652
東京都新宿区神楽坂1-1-1

もし近くのお近くの特許流通アドバイザー（○○○○をご覧下さい）にご連絡下さい。
色覚能力（特性）を柔軟かつ鋭敏に、しかも簡便に数値化して検出できる色覚能力測定装置

出願人：学校法人慶應義塾

色覚検査は色覚異常者の検出という目的を脱して、色覚能力を一種の個性であると考えて微妙な色感覚の相違を捕える検査法の開発が望まれている。健常人できさえ、何からの色覚異常があり、疾患や心的要因によっても変化する。従来の色覚能力検査法では、赤緑異常などの典型的な異常例の検出しかできない。また、従来のパーソナルコンピュータのディスプレイ上に望ましい明度・色相・彩度の表示を行って色覚検査を行う方法では混同色軌跡を基に構築されているために柔軟性に乏しく、軽度の異常の検出力が低い欠点があった。

本発明は、色覚能力（特性）を柔軟かつ鋭敏に、しかも簡便に数値化して検出できるパーソナルコンピュータを用いた色覚能力測定装置を提供する。検査１では、無彩色を表示する領域と同じ色相で彩度が無彩色から順に増加して行く複数の領域を並べて、被検者に最初に有彩色と見える領域を選択させて彩度の検出閾値とその分散を算出する。この分散に基づいて検査画面上に表示する複数の有彩色領域間の彩度差を変更して再度検査してより確度の高い彩度の検出閾値とその分散を算出するようにし、色相を変化させ同様の検査を繰り返す。検査２では、参照色の領域の周囲に異なる複数の色相の領域を表示して同一色に見える領域を選択させて色相間の検出能力を測定する。

ユーザーや活用アイディア

- 健康評価装置
- 作業環境シミュレータ・評価装置
- 作業環境を様々な変動できるシミュレータに本発明装置を加えて、色覚能力への影響評価をする装置
- 本発明の測定装置を利用して色覚能力を向上させるための表示画面を利用した検出訓練する色覚能力訓練装置

色覚異常の検出としての色覚検査の役割は低下しつつあるが、色覚能力の微妙な相違を高い検出能力で定量的に測定できる本発明の色覚能力測定装置の必要性は今後、益々高まるものと想定される。鋭敏な色覚感性を有する人物の選択・検出を必要とする分野は色覚を厳密に扱うデザイン関連業務、色覚検査を必要とする交通関連業務、迷彩に鋭敏な認識力を必要とする防衛関連業務などと幅広い。また、疾患の検出・病態を推定することは、生活の質（生活の質）の観点および予防医学の観点からも重要である。医療用機械器具卸売業（歯科用機械器具を含む）の年間販売額は2兆円（平成10年、経済産業省）が関連する全体市場であり、その4%と想定すると約8000億円の直接的な関連市場が想定される。医療用計測器製造業の出荷額2000億円（平成10年、経済産業省）の1%として3000億円の直接的な市場が想定される。
特許情報

- 権利存続期間：出願中
- 実施段階：実施無し
- 技術導入時の技術指導の有無：応相談
- ノウハウ提供：応相談
- ライセンス制約条件：許諾のみ

| 出願番号 | 特願 123456789
| 出願日 | 2022年1月1日
| 公開番号 | 特開 123456789
| 公開日 | 2022年3月3日
| 特許番号 | 出願中
| 登録日 | 出願中

参考情報

- 特許流通アドバイザーによる推薦
- 関連特許：あり
- 対象：特定
- 参照可能な特許流通支援チャート
 - 13年度 電気3 個人照合
 - 15年度 電気20 遠隔医療・遠隔介護システム

皆様からのお問合せを、お待ちしています。

- この特許の問合せ先 ☞

学校法人慶應義塾
慶應義塾大学知的資産センター
事務長 伏見 知行

〒 100-0000
東京都港区三田 1-2-3 三田川崎ビル 1F

もし近くの特許流通アドバイザー (☇상담をご覧下さい) にご連絡下さい。
液体中に分散した気泡が液体と相互作用を及ぼし合いながら流れる気泡流の解析方法

特 許 権 者：国立大学法人名古屋大学

従来の気泡流の一般的解析方法としては、流れの変数として速度、圧力および気泡体積率を用い、複数の偏微分方程式を様々な数值解法によって計算するもののがあるが微分を差分で近似表現することにより、代数方程式に置き換えられるが、非線形項が数値不安定性を有するため、気泡流のレイノルズ数が大きい場合には計算過程で発散が生じ、解が得られない。従来のもう一つの方法である満度をもつ渦要素を追跡して満度場の時間変化を求めるラグランジュ型解法の利点では気泡が液相に影響を及ぼさないことを前提として気泡流の挙動を解析するものであり、液中に分散した気泡が液体と相互作用を及ぼし合いながら流れられる気泡流の挙動を精度良く解析できるものではない。

本発明は気泡流の満度場に着目して複数の渦要素で離散化し、気泡流内の気泡体積割合を考慮した運動量保存関係および質量保存関係から満度輸送方程式を導出しラグランジュ計算により離散渦要素の挙動を求めるものである。満度輸送方程式のラグランジュ計算には非線形項が現れないため、レイノルズ数に依存することなく、高レイノルズ数の気泡流について高精度解析が可能になる。

用語解説

- **気泡流**
 液体中に小さな気体を含む流れ

- **レイノルズ数**
 慣性力と摩擦力（粘性による）との比で定義される流れの性質を表す無次元数

- **アプリケーションソフトをインターネットを通じて提供する事業者**
 ユーザはディスクライバーやブラウザなどで利用

本発明により（1）従来の偏微分方程式法では困難であった気泡流のレイノルズ数が高い場合も適用可能となる、（2）従来の渦流では得られない高精度の気泡流挙動解析が可能となる。したがって気泡と液体が混在して相互作用を及ぼし合いながら流れられる気泡流が観察される様々な流体システムの解析を可能とする。この解析技術は化学プラント、火力プラント等における各種熱交換器、反応装置や石油プラント、廃水プラントにおける各種流体機器等の解析に有用である。各種条件を変えてシミュレーションできることが製品開発期間や開発費用削減に役立つ。気泡流シミュレーションソフトとしてはパソコン上で高い対話性（入力容易、シミュレーション出力の動画表示等）を実現することにより多くの流体機器メーカー、研究機関、大学等で活用可能なものとなる。ビジネス形態としてはソフトパッケージ型とコード型が考えられる。
特許情報

・権利存続期間：10年
・実施段階：実施無し
・技術導入時の技術指導の有無：有り
・ノウハウ提供：有り
・ライセンス制約条件：許諾のみ

出願番号：特願 00000000
出願日：平 00000000

公開番号：特開 00000000
公開日：平 00000000

特許番号：特許 00000000
登録日：平 00000000

参考情報

・関連特許：なし
・・・：なし

皆様からのお問合せを、お待ちしています。

■ この特許の問合せ先 ■
財団法人名古屋産業科学研究所 中部
技術移転部
部長 大森 茂嘉
〒 00000000
愛知県名古屋市中区栄 〒 00000000
電話 000-0000-0000
FAX 000-0000-0000

もしくはお近くの特許流通アドバイザー (000-0000をご覧下さい) にご連絡下さい。

特許流通データベース情報

・タイトル：気泡流の解析方法、気泡流シミュレーションプログラム及びそれを記憶した記憶媒
・ライセンス番号：00000000
・■ ■
パイプの仕切りに板を付け、衝撃事故時の胸部傷害を防止

出願人：財団法人鉄道総合技術研究所

鉄道車両の座席としては横長のロングシートが一般的であるが、その末端部の仕切りには普通パイプタイプのものが使われている。その場合、万が一衝撃事故が発生した時、そのパイプに人体胸部が激突し、傷害を受けるケースの多いことが、事故内容の分析から分かっていた。

本発明はパイプタイプの仕切りの両側からパイプを挟み込むように内側板と外側板を取り付けることで、その板が急な面積で人体の衝突を受け止めることから、特に胸部傷害を防止するものである。その結果は、乗客モデルとロングシートモデルを使ったシミュレーションおよび検証実験でも明らかになった。また、傷害防止板を化粧板にし、冷たい機械的なパイプタイプの仕切りを、美観上も良い体とされるような雰囲気の座席にすることも可能になる。さらに内部のパイプ位置にあたる場所へくくりぬき穴を開けておけば、従来のパイプタイプと同様手でパイプを握りながら安定した動作で立ち座りすることも可能である。このように、既存のパイプタイプ仕切りを交換しない必要はなく、新たに傷害防止板を取り付けるだけの最小の手間と費用で、鉄道衝撃事故時の胸部傷害防止に大きな効果が得られる。

ユーザー業界	活用アイデア
鉄道以外の公共輸送機関のロングシート
鉄道以外の公共輸送機関のロングシート等のパイプ仕切りの仕切り板を設け、突発事件時の衝撃を低減する

牛車運搬車
車内を網またはパイプ板で簡単に仕切り、そこへ乗客向け板を貼り付けで牛馬が傷つかない運搬車

用語解説

ロングシート　横向きに複数人数が並んで座ることのできる長い椅子、ベンチシートともいう

乗客モデル　乗り物での事故等を模擬するための、大きさ、重さ、手足の動きなどを人に似せて作ったダミーの人形

シミュレーション　実際にできないことを、ある範囲内の条件で模擬して、結果を調べること

本発明は、鉄道車両の衝撃事故の際の物理的な傷害を最小に防ぐための乘客用座席の構造である。万が一の事故に対しても、傷害防止の観点から鉄道車両や乗合いバスの座席は全てこの構造に改善されることが予想され、一部車両では既にこの構造が採用されている。さらに安価な仕切り構造として既に多く使用されているパイプタイプまたは角材タイプの仕切りを使って、大きな生生物等を運搬する場合（例えば馬、牛の輸送や運搬など）にも応用できるものと考えられる。すなわち、仕切りの主要部分に平面板を取り付けることにより、摩擦や衝撃によって仕切り自体が輸送物体を傷つけが簡単な手間と少ない費用で回避されるようになる。
図1 傷害防止用座席補助仕切りの設置概要図

図2 ロングシート乗客のシミュレーション例

特許情報

・権利存続期間：出願中
・実施段階：実施無し
・技術導入時の技術指導の有無：応相談
・ノウハウ提供：応相談
・ライセンス制約条件：許諾のみ

参考情報

・関連特許：なし

皆様からお問合せを、お待ちしています。

この特許の問合せ先

財団法人鉄道総合技術研究所
情報管理部 知的財産
課長 坂本 義雄

〒100-0004
東京都千代田区大手町 4-3-1-2

もしくはお近くの特許流通アドバイザー
（最新をご覧下さい）にご連絡下さい。
不均衡負荷に対応できる三相フィルタ付インバーター

出願人：学校法人同志社

直接電源から三相交流電力に変換を行うインバーターは出力と周波数が高い三相誘導電動機を用いることを可能とするので、大電力を扱う応用分野においての用途が広い。インバーターは直流電力を半導体素子によって切り替え、擬似的な交流波形を作るものであるから、その出力にはパルス波形の成分が含まれることになり、これに起因する高調波雑音の周囲環境への影響及び負荷装置の効率への影響を軽減するために出力側にフィルタを用いることが要求されている。

一方で負荷の電力消費の形態は規則正しくなく、インバーターの制御はその変動に追従して良好な特性の出力波形を保つことが要求される。特に三相電力では負荷はそれぞれの相における相対的なものであるので全体としては不均衡が起き、それに対応する従来の制御方法は複雑高価なものであった。本発明は三相型インバーターの不均衡型負荷制御を応用した、不均衡負荷に対応できる簡単な制御による三相フィルタ付インバーターを提供している。

本発明は三相の内二相のインバーター出力電圧を予め定められた任意の制御側に従って独立に制御し、残り一相、二相の出力により従属的に制御するのに、三相電圧型インバーターの各相への規格化インバーター、調整値を付加して調整し、各相への指令値を適宜同じレベルシフトさせることにより、出力電圧波形を拡張して制御可能とする。

ユーザーフィルタ付
特許情報

・権利存続期間：出願中
・実施段階：実施無し
・技術導入時の技術指導の有無：応相談
・ノウハウ提供：応相談
・ライセンス制限条件：譲渡または許諾

出願番号：特願
出願日：

公開番号：特開
公開日：

特許番号：出願中
登録日：出願中

参考情報

・関連特許：なし

皆様からのお問合せを、お待ちしています。

この特許の問合せ先

学校法人同志社
同志社大学知的財産センター
研究開発推進課
蔵野 慎介
〒 718-8577
京都府京田辺市多々羅都谷 \(-\)

もしくはお近くの特許流通アドバイザー（ \(\)をご覧下さい)にご連絡下さい。

特許流通データベース情報

・タイトル：フィルタ付三相PWMインバータの制御方法、及び同方法に従って動作するインバータ装置
・ライセンス番号：
・公開日：

からご覧になれます。
白色発光の再現性・素子の安定性が高い有機・□素子

出願人：独立行政法人理化学研究所

本発明は、白色発光有機・□素子に使用される新規発光化合物およびこの化合物を使用した、白色発光有機・□素子並びにその製造方法に関するものである。

有機・□素子に使用される発光材料としては、青色に発光するもの、赤色に発光するもの、緑色に発光するものは知られているが、白色に発光するものは少なかった。そのため、白色発光する有機・□素子を得るためには、青色発光化合物、赤色発光化合物、緑色発光化合物を混合し、三色を混色することにより白色発光を得る手法がとられており、発光化合物の混合比を調整する必要があり、製造工程が煩雑となる。そのため、白色発光の再現性や安定性の点で課題があった。

本発明は、単一の発光成分により白色発光を特長の一つとし、置換若しくは無置換のアリール基または一価の芳香族複素環基を有し、主鎖上に二重結合と三重結合を同時に有する共役エンジン構造の化合物である。このような構造の化合物であるため、主鎖上に置換した電子は、分子全体にわたって電子による共役が可能となっている。

用語解説

- □電子：原子間をつなげた直線に対して垂直な軌道面を持つ□軌道の電子。二重結合または三重結合の化合物において見える。

- 芳香族炭化水素：ベンゼンなど、芳香族を示す単環あるいは複数の環（環化物）から構成される炭化水素

- カラムクロマトグラフィー：固定相、管状容器（カラム）中に充填して用いる化合物の精製法
特許情報

- 権利存続期間：出願中
- 実施段階：実施無し
- 技術登載時の技術指導の有無：応相談
- ノウハウ提供：応相談
- ライセンス制約条件：許諾のみ

出願番号：特願
出願日：平

公開番号：特開
公開日：平

特許番号：出願中
登録日：出願中

参考情報

- 関連特許：なし
- 類別：なし

皆様からのお問合せを、お待ちしています。

この特許の問合せ先

独立行政法人理化学研究所
知的財産戦略センター
知財創出・活用チーム
鈴木 久美子
〒765-0801
堺市和光町広瀬- ☎
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
☎ 075-433-8111
[assembly error]
お酒と共に花々をたしなむ「生花を食しまし鮮花」
特 許 権 者：株式会社北岡本店

従来、アルコール飲料に使用される花は、乾燥させたり、塩漬けにして添加するため、どうしても生花の色が落ちたり、味の変化や、劣化が避けられない。こうした理由から、結婚披露宴やその他祝賀というおおめなたい席には適さない。上記の様々な問題を、生花および生葉に下記の加工処理を施すことで解決したのが、本発明である。まず、採取された生花を、重曹溶液で煮沸し、クエン酸溶液で洗浄した後、糖度 10%以上の糖液と、飲食可能な酸を混合したシロップに溶け込む。酸は、生花の変色を抑制する。この工程が完了した生花は、この程度になる。これが未乾のまま、アルコール飲料の味を劣化させる恐れがあるので、添加には適さない。次に、アルコールへ生花を添加するが、添加されるアルコール飲料を 0.1〜0.3% に加熱することで、生花を生きて生花状態状態にすることが可能となる。また、生花の比重は、アルコール飲料より高いため、生花はアルコール飲料に沈む。瓶に入る際、生花は萎んだ状態になっており、狭い瓶の口から生花を傷つけずに挿入することが可能となる。このようにしてアルコール飲料に添加された生花からは、香りや着色等が徐々にアルコール飲料に溶け出す。
なお、上記の生花以外、枝や葉っぱのいった穂等の葉や松葉等の生葉にも適用することが可能で、アルコール飲料としては、日本酒、焼酎の他、ワイン、ウイスキー等の醸造酒でもあってもよい。

用語解説
醸造酒
原料を酵母によりアルコール発酵させて作る酒。蒸留などの作業を経ず、アルコール発酵がそのまま動くもの
重曹
炭酸水素ナトリウム、重炭酸ナトリウム、重炭酸ソーダ、重曹）はナトリウムの炭酸水素塩
クエン酸
柑橘類などに含まれる有機化合物で、ヒドロキシ酸の一つで、食品添加物として多用される化合物

ユーザーや界
活用アイデア
・冠婚葬祭用
・日本酒に生花を丸ごと浮かべた。見事な景やかな、より一層の高級感・華麗さを追求した酒

飲の世界での表現枠の拡大
・趣味となる四季折々の花材を使用した酒
特許情報

- 権利存続期間：X年Xヶ月 Ⅹ ⅩⅩⅩⅩⅩⅩⅩⅩ
- 実施段階：実施有り
- 技術導入時の技術指導の有無：応相談
- ノウハウ提供：応相談
- ライセンス制約条件：許諾のみ

出願番号：特願ⅩⅩⅩⅩⅩⅩⅩⅩ
出願日：ⅩⅩⅩⅩⅩⅩⅩⅩ
特許番号：特ⅩⅩⅩⅩⅩⅩⅩⅩ
登録日：ⅩⅩⅩⅩⅩⅩⅩⅩ

参考情報

- 特許流通アドバイザーによる推薦
- 関連特許：なし
- Ⅹ：ⅩⅩⅩⅩⅩⅩⅩⅩ

皆様からのお問合せを、お待ちしています。

この特許の問合せ先

株式会社北岡本店
常務取締役 営業本部長
保井 亮

〒〇〇〇〇〇〇
奈良県吉野郡吉野町上市

もしくはお近くの特許流通アドバイザー
(ⅩⅩⅩⅩⅩⅩⅩⅩをご覧下さい)にご連絡下さい。
衝撃吸収特性に優れ、動的変形時に大きなエネルギーを吸収する発泡合金製衝撃吸収材

出願人：公立大学法人首都大学東京

従来、振動や衝撃を緩和する物としては、防振ゴムやオイルダンパー等が使用されている。しかし、防振ゴムは経時劣化があり長期間の耐久性が要求される用途には適しておらず、オイルダンパーは定期的なメンテナンスを要することが欠点である。最近では、アルミニウムをベースとした合金発泡材の発泡アルミニウムが衝撃吸収材として注目されている。一方、衝突エネルギーは高速で衝突するほど大きくするために、静的な変形よりも動的変形時のエネルギー吸収力が重要であるが、発泡アルミニウムは、変形応力の歪みの速度依存性が極めて小さく、動的変形時のエネルギー吸収量に変化がみられず衝撃吸収材としての課題があった。

本発明は、歪み速度感受性のある金屬材料を種々調査し、その合金を衝撃吸収材として応用することを試みた。本発明の発泡

ユーザー業界

活用アイディア

- 高性能クッション
 ① 本発明の合金発泡材を高強度でリサイクルに優れた動的変形に対応できる特性を利用してビル等の免震構造、及び長期間の耐久性を必要とする建造物の緩衝材に活用

- 高性能衝撃吸収・吸音材
 ① 本発明の合金発泡材の軽量、且つ高性能衝撃吸収・吸音特性を利用して自動車や労働環境等の動的吸収・吸音材に活用

- 高性能フィルター
 ① 本発明の合金発泡材の耐熱・不燃性を利用して気体や液体の圧力損失の少ない高性能フィルターに活用

- 超軽量耐衝・耐熱・不燃建材
 ① 本発明の合金発泡材の軽量・耐衝・耐熱・不燃特性を利用して冷暖房設備の建材等に活用

- 高性能衝撃吸収・音響保全
 ① 本発明の合金発泡材の軽量、且つ高性能衝撃吸収特性を利用して自動車、その他の、振動機関車等の
音響・音響保全に活用

本発明の発泡体の製造方法では、高エネルギー吸収性能は、セル壁の微細な結晶粒組織に因するものであり、従来の発泡アルミニウム等に比べ格段に優れた衝撃吸収材として、この方法で作製した発泡体の用途は非常に広く、またまた用途開発はこれからとえる。また、この手法により作製した発泡

用語解説

- 高性能クッション
- 高性能衝撃吸収・吸音材
- 高性能フィルター
- 超軽量耐衝・耐熱・不燃建材
- 高性能衝撃吸収・音響保全

これらの用語は、それぞれの発明の特徴を示すものであり、製品の特徴を説明するのに用いるものである。
特許情報

・権利存続期間：出願中
・実施段階：実施無し
・技術導入時の技術指導の有無：応相談
・ノウハウ提供：応相談
・ライセンス制約条件：譲渡または許諾

参考情報

・関連特許：なし
・氏名：なし

皆様からのお問合せを、お待ちしています。

この特許の問合せ先

公立大学法人首都大学東京
産学官連携センター
知的財産マネージャー
馬場 信義

〒106-0808
東京都港区芝大橋台一丁目1番地1号

もし近くにお近くの特許流通アドバイザーをお知らせください。
(ご連絡はお受けいたします)
ゲー.jpgなどの仮想空間生成技術であり、利用者に風圧を与えて、臨場感を高める

出願人：学校法人金沢工業大学

利用者の想定位置の周囲に配置された以上の複数の送風用ファンを備え、環境風再現装置によって、映像や音声と併せて、送風ファンを用いて現実の環境風を忠実に再現させて、臨場感の高い仮想空間を生成する。中央に利用者が位置して、再生装置、環境提供部と、環境風再現装置の3つのユニットを構成する。再生装置は、プレイヤーやテレビチューナー、ゲーム機などであり、利用者に提供すべき映像データや音声データを生成する。環境提供部は、例えば、ヘッドマウントディスプレイと、音声再生部と、を含む。環境風再現装置は、複数の送風用ファンと、風圧制御部と、を含み、送風用ファンは、利用者に対して、少なくとも異なる3方向からの送風、すなわち風圧を印加できるように利用者の想定位置の周囲に複数個が、配置される。好ましくは、利用者の視点を含む平面の上下の範囲に配置される。風圧制御部は、フレーム内に含まれる環境風再生成用のデータに応じて、各送風用ファンの回転数を制御している。あるいは、環境提供部により提供される環境データ、すなわち映像データや音声データを、環境風再生用のデータに変換して、回転数を制御している。

近年、テレビの大型化や、高機能なゲーム機器の急激な普及にともない、家庭で映画やゲームを臨場感豊かに楽しむことが可能なホームシアターなどへの関心が高まっている。

本発明の仮想空間生成装置は、ゲーム機器や、ホームシアターなどの映像視聴装置に利用が可能であり、あるいは、プロジェクター、ウィンドサウンドシステムのパーソナルエリアネットウェアに対応され、利用者に現実の環境風、すなわち風圧を与えることによって、臨場感の高い仮想空間を提供することができる。また、別の利用分野としては、文化遺産などの景観、建造物を電子的にアーカイブしたコンピュータグラフィックス技術の仮想的に再現される映像情報に加えて、その環境で聴覚される音や、風、気温などの保存対象をより忠実にアーカイブすることができる。参考として、これらを含むコンテンツ産業は、経済産業省の予想で、2000年には約1兆円規模になるものといわれている。

用語解説

アーカイブ
保存対象をビデオカメラ等により記録したり、3次元的に測定し、解析する画像の記録技術

環境風測定装置
本発明では、大気の流量や風速を測定する。エアフローメーター（アンファンカップ）を用いる

仮想空間生成装置
ホームシアターや、ゲーム機器などのリアルな映像に加えて、リアルな風を付加する機能

ユーザーデータ

活用アイデア

ゲームマシン
『風圧の臨場感高い仮想空間を演出』

ホームシアター
『3方向の風圧のリアル空間を演出』

アーカイブ
『環境風再生用のデータに変換制御』
特許情報

・権利存続期間：出願中
・実施段階：実施無し
・技術導入時の技術指導の有無：応相談
・ノウハウ提供：応相談
・ライセンス制約条件：許諾のみ

出願番号：特願

出願日：

公開番号：特開

公開日：

特許番号：出願中

登録日：出願中

参考情報

・関連特許：なし
・出願：
・参照可能な特許流通支援チャート
 :17年度 電気32 □□アニメーション技術

皆様からのお問合せを、お待ちしています。

この特許の問合せ先

学校法人金沢工業大学
研究支援機構事務局
諸谷 克郎

〒 石川県

石川県石川郡野々市町扇が丘 0- -

☎

もし近くの特許流通アドバイザー
(□□□をご覧下さい)にご連絡下さい。
高い緩衝性能を備え、様々な製品の梱包材として用いることができる部材

出願人：有限会社カートンパートツセンター

本発明は、簡易な構造でありながら、耐衝撃性にも優れる、商品の梱包や包装のために使用する梱包部材に関するものである。従来、商品を段ボール箱に詰めて運搬する場合、段ボール箱と商品の隙間に、発泡スチロール製のブロックやポリエチレン製の気泡緩衝シート等の梱包部材を配置し、外部から加わる衝撃を緩和させていた。しかし、これらの梱包部材は、素材の性質上、焼却すると有害物質を発生させ、廃棄の際、段ボール箱と分別する必要があり、手間がかかる。また、リサイクルも容易でないという問題を有していた。このような問題を解決するため、段ボール箱と同じ素材の梱包部材の開発が望まれている。

上記の要望に応えるため、本発明は、側面を互いに接する2つの角管からなり、被梱包物を支持する支持部材と、断面が円の形状に形成された補助部材とから構成される。また、補助部材には端縁部から中心方向に切り込みが形成され、この切り込みから、支持部材を構成する2つの角管の当接部に補助部材が嵌まり込む構造となっている。このような構造することで、2つの角管が密着し、補助部材が垂直に支持部材の当節部に嵌まり込むことから、曲げに対する抗力が向上し、高い緩衝性能を発揮することが可能となる。

ユーザー業界　活用アイデア

電子機器梱包部材
パソコン等の電子機器を運搬する緩衝材として使用する

機械部品梱包部材
□セットメーカーへ依頼する機械部品運搬時の緩衝材として使用する

近年、廃棄時作業負担が軽減できて、リサイクルが容易な梱包部材として、箱と同様素材の段ボール製梱包部材に対する注目度が高まっている。しかし、段ボール製の梱包部材のほとんどが、通常フラットな形状の段ボールを緩衝材として機能させるために複雑な形状に組み立てられている。そのため、組み立て作業のコストがかかり、歩留まりが悪く、汎用性も低い。

本発明は、簡単な構造でありながら高い緩衝性能を備え、安価で汎用性に富む梱包部材を提供する。そのため、日用品から機械部品に至るまで、様々な製品の梱包部材として利用することができ、従来から汎用的に用いられている発泡スチロール製のブロックやポリエチレン製の気泡緩衝シートの代替として用いられることも十分期待できる。
特 許 情 報

- 権利存続期間：出願中
- 開発段階：実施有り
- 技術導入時の技術指導の有無：応相談
- ノウハウ提供：応相談
- ライセンス制約条件：許諾のみ

参照番号：特願 [番号]
出願日 [日付]
公開番号：特開 [番号]
公開日 [日付]
特許番号：出願中
登録日 [日付]

参考情報

- 特許流通アドバイザーによる推薦
- 関連特許：なし
- [問い合わせの詳細]

皆様からのお問合せをお待ちしています。

この特許の問合せ先

有限会社カートンパーツセンター
代表取締役社長
石川 波

〒 [郵便番号]
山口県山口市大字下小館 [住所]
[電話番号] [ファックス番号]

もし近くの特許流通アドバイザー
([番号] をご覧下さい) にご連絡下さい。
本発明の光増感剤を、腫瘍組織に集積させて、レーザー光を照射すれば、腫瘍組織を壊死にする高い増感効果

出願人：国立大学法人宇都宮大学

本発明は、蛍光量子効率のよいクロロフィル・ナノ粒子およびその製造方法に関する。課題として、光増感剤であるクロロフィル類を選択的に腫瘍組織に集積させることにより、このような会合体のナノ粒子が圧倒的に増感剤であると考えられる。こうした観点から、リポソームやデンドリマー等、様々なドラッグキャリアがこれまで検討されているが、クロロフィル類縁体会合体そのものを機能化する研究例はなかった。そして、クロロフィル類縁体の会合体ナノ粒子の蛍光発光を大幅に改善することができれば、それは優れた光増感剤となると期待される。また、会合体ナノ粒子内部での励起エネルギーの失活を防ぐためには（会合体の蛍光発光効率や一重項酸素発生効率の低下を防ぐために）会合体粒子内のクロロフィル類縁体分子同士の高次会合を抑制することが必要である。そこで、クロロフィル類縁体とそのクロロフィル類縁体分子間の距離を広げるスペーサー分子とが混合して存在するクロロフィル・ナノ粒子により、上記課題を解決した。このクロロフィル・ナノ粒子において、クロロフィル類縁体を構成するクロロフィルの長さと、スペーサー分子を構成するコレステロール骨格の長さがほぼ等しいことが好ましく、また、クロロフィル・ナノ粒子は、クロロフィル類縁体とリトコール酸誘導体を混合して得ることができる。

光増感剤の光増感剤としては、組織透過性のよい以上以上の吸光係数が大、一重項酸素発生能が大、粒子のサイズが腫瘍組織に進入し易く且つ滲透性が良い、細胞膜に吸着し易く且つ透過性良いカチオン性、合成が容易で、の5点が必要である。本発明は、リトコール酸誘導体等のスペーサー分子をクロロフィル類縁体等の増感剤や他の蛍光色素と混合することにより、クロロフィル・ナノ粒子の粒径や蛍光発光特性、活性酸素発生能、触媒能等の異なる様々なナノ粒子を得ることができる。本発明のクロロフィル・ナノ粒子は、上記範囲内の粒子径であるパララクスが小さいので、腫瘍組織に進入し易く、かつ滲透し易い。そして、以上の吸光係数が大、蛍光発光の低下が起き難く、一重項酸素発生能が大きいので、腫瘍組織に集積させた光増感剤をレーザー光を照射すれば、その高い増感効果により腫瘍組織を壊死に陥らせることができると期待できる。
この光増感剤を、腫瘍組織に集積させて、レーザー光を照射すれば、高い増感効果が期待できる。

特許情報

・権利存続期間：出願中
・実施段階：実施無し
・技術導入時の技術指導の有無：有り
・ノウハウ提供：有り
・ライセンス制約条件：許諾のみ

出願番号：特願 2000-0000000
出願日：2000-01-01

公開番号：特開 2000-0000000
公開日：2000-01-01

特許番号：出願中
登録日：出願中

参考情報

・関連特許：なし
・○○○○○○○○○

参照可能な特許流通支援チャート
: 16年度 化学25 光触媒（材料技術及び担持技術）

皆様からのお問合せを、お待ちしています。

この特許の問合せ先　

宇都宮大学
知的財産センター
教授・センター長
山村 正明
〒 200-0000
栃木県宇都宮市東1-2-1-3

もし近くのお近くの特許流通アドバイザー
(○○○○をご覧下さい)にご連絡下さい。
室内環境で利用可能な光触媒

出 願 人：独立行政法人物質・材料研究機構

本発明は、太陽光や室内照明に含まれている高い紫外光以外にも、これよりエネルギーの低い、波長の長い可視光領域の光に対して触媒活性を有し、光スペクトルを効率よく利用できる光触媒の製造方法に関するものである。

本発明の光触媒は、鉛とニオプとマグネシウムからなり、これらの比率が極めて広範な領域にわたる複合酸化物半導体からなる光触媒であって、一般式：

\[
\text{単要素組成公式} \quad (0 < \text{単要素1} < 3, 0 < \text{単要素2} < 3, 0 < \text{単要素3} < 3, 0 < \text{単要素4} < 3)
\]

で表される組成を有する複合酸化物半導体からなる可視光応答型光触媒材料であり、光を照射すると可視光領域の波長のスペクトルを十分に吸収することができ、これまで実用化されてきた酸化チタンをベースとした紫外光応答型光触媒に比較して、極めて優位性を持つ材料である。

また、紫外光のみならず、可視光を利用して工場などで最もよく利用されている単純な一種でもある2-プロピルアルコールを効率よく分解でき、シックハウス症候群の原因ガスの一つであるアルデヒドガスや環境ホルモンなどの有害物質も分解、除去することができる能力を有している。さらに光触媒の機能として注目されている光触媒を汚染している付着しやすい表面にコーティングし、付着した汚れが光の作用によって分解するセルフクリーニング技術にも供することができる。

<table>
<thead>
<tr>
<th>ユーザー業界</th>
<th>活用アイデア</th>
</tr>
</thead>
<tbody>
<tr>
<td>化学・薬品</td>
<td>汚れにくい照明白器</td>
</tr>
<tr>
<td>生活・文化</td>
<td>生活・文化用品ショーケース</td>
</tr>
</tbody>
</table>

本発明は、紫外光のみならず波長の長い可視光領域の光に対しても高い触媒活性を示す可視光応答型光触媒に関するものであり、有害物質とされる有機物の分解や汚れ物質分解浄化および水素基生することができる。

これまで実用化されてきた酸化チタンをベースとした紫外光応答型光触媒を比べ、紫外光以外の可視光も利用できることから、悪天候や日照に左右されることなく、室内外の蛍光灯などのように紫外光領域の割合のわずかな光源であっても、十分な光触媒効果が期待できる。そのため、照明器具に塗布することにより、自然滲留の中で臭気物質等を分解することも可能となり、エアコンなどにも取り付けで抗菌・脱臭等の効果を付加し、高付加価値の空気清浄機の提供が期待できる。

用語解説

<table>
<thead>
<tr>
<th>用語</th>
<th>解説</th>
</tr>
</thead>
<tbody>
<tr>
<td>バンドギャップ</td>
<td>半導体、絶縁体のバンド構造における価電子帯の頂上から導帯帯の底までの間のエネルギー準位</td>
</tr>
<tr>
<td>スペクトル</td>
<td>化学において、試料に対し何らかの刺激を与えた際、その刺激や応答を特徴づける量に対する応答強度の記録</td>
</tr>
<tr>
<td>燃結</td>
<td>固体粉末の集合体を融点よりも低い温度で加熱すると固まって焼結体と呼ばれる緻密な物体になる現象</td>
</tr>
</tbody>
</table>
特許情報

・権利存続期間：出願中
・実施段階：実施無し
・技術導入時の技術指導の有無：応相談
・ノウハウ提供：応相談
・ライセンス制約条件：許諾のみ

出願番号：特願 000000000
出願日：平 00000000

公開番号：特公開 000000000
公開日：平 00000000

特許番号：出願中
登録日：出願中

参考情報

・関連特許：なし
・分野：通信 通信

皆様からのお問合せを、お待ちしています。

この特許の問合せ先

独立行政法人物質・材料研究機構
連携推進室 知的財産チーム
係長 中野 恵介
〒 0000000
茨城県つくば市千歳 000-0000

もしくはお近くの特許流通アドバイザー
(☏ ☎ をご覧下さい) にご連絡下さい。
老人や病人に優しく、効果的な脚の運動のリハビリ装置

特許権者：有限会社日中高木商事

脚の運動の機能回復のため、寝た姿勢にて負担なく膝の曲げ伸ばし運動を行う装置として、適度な負担をかけず足首・膝関節の運動や疑似歩行運動を行う補助装置が望まれていた。

本発明による装置は、基枠の上面部に並設された一対のスリット、スリットに沿い傾動しながら移動可能な足置部材および基枠内において足置部材を傾動移動させる移動制御機構から構成される。移動制御機構は、スリットに平行な一対のレール（ラック歯車等）、レールに沿ってモータの正逆回転によって回転移動する回転軸部材（ビニオン歯車等）、回転軸部材を挿通させ、足置部材を傾動させながら移動するスライドユニット、足置き部材の傾動を制御する連結機構（カム機構等）およびこれらを作動させる作動機構等から成される。また、使用者の体調に合わせ、足置部材の運動速度等を調節するリモコン機能を有する。

これらにより、従来の椅子等に着座しながら運動を行う装置に比べ、寝た姿勢にて自身の脚力を使わず、モータの動きに従って膝の曲げ伸ばし運動ができる、長時間継続の運動が容易となる。このため、老人や病人にとって優しく、効果のある脚の運動のリハビリを行うことができる。

用語解説

- ビニオンとラック：小口径の円形歯車（ビニオン）と平板状歯車（ラック）の組み合わせにより、回転運動を水平移動に変えるもの
- リハビリ：リハビリテーションのことで、ここでは、慣用的に使われている治療体操や運動療法をいう
- 健常者：慢性的な障害や疾患がなく、日常生活の活動に特に支障のない人をいう

ユーザー業界

- 生活・文化
- 機械・加工
- 電気・電子

活用アイデア

- 老人・病人的リハビリ装置
 - 寝たきり老人や病人の疑似歩行運動の補助装置に適用し、使用者の体調を考慮した負担のない効果的なリハビリが可能となる

- マスキュラーリング装置
 - 健常者や運動選手の関節機能の強化に長時間使用し、関節の運動能力を適度な努力無しに自然に強化することができる

本発明は、寝た姿勢のまま足首・膝関節の運動や歩行運動のリハビリができ、また持ち運びができる簡易な装置であるため、場所を選ばず、様々な用途が考えられる。まず、高齢者社会を迎えて増大しつつある老人医療において、長期に寝たきり老人の看護が大きな負担となっている。このため、歩行運動等の機能回復は極めて緊急な問題となっており、本発明を適用することにより老人や病人に優しく、効果のあるリハビリを行うことができる。また、高齢者や若年者の病気や怪我等の長期入院に対するリハビリにも有用である。さらに積極的に健常者においても、寝た姿勢にて膝の曲げ伸ばし運動を継続することで、足首や膝の関節機能を強化して、それらの老化を防ぐことも可能である。このように、医療を中心としたニーズは今後益々増大していくものと予想され、その市場規模は非常に大きい。
特許情報

・権利存続期間：○○年 □□ヶ月 □□日・□□日まで
・実施段階：実施無し
・技術導入時の技術指導の有無：無し
・ノウハウ提供：無し
・ライセンス制約条件：譲渡または許諾

参考情報

・特許流通アドバイザーによる推薦
・関連特許：なし
・ⓒコピー：なし　㊞㊞㊞㊞

皆様からのお問合せを、お待ちしています。

この特許の問合せ先

有限会社日中高木商事
代表取締役　高木　俊明
〒　□□□□□□
静岡県沼津市今沢 □□□□- □　県営住宅 □□□□　□□□□
□□□□□□□□□□□□□□□□□□□□□□□

もしくはお近くの特許流通アドバイザー（㊞㊞㊞㊞をご覧下さい）にご連絡下さい。
曲げても絞っても割れない、しわがよらない天然木の
突き板

特 許 権 者：高知県

家具を初めとする木工製品には、無垢の木材をそのまま使うのではなく、特に木目が美しい素材を薄くスライスしたものを美しい材料に貼りつけていわゆる突き板が多く使われている。また、木工以外の金属やプラスチックに印刷するのではなく、天然の木材をスライスした薄板を化粧用に貼って使うことも少なくなはない。

しかし、これらの突き板は木材であることをの特性上曲げに対する耐性が少なく、また伸びもほとんどないのでこちらを貼った製品の形状には自ずから制限があり、印刷による木目模様ののような自由な三次元形状を形成するのは困難である。

本発明の突き板は、木材のこのような曲げ加工の困難を解決して木材の美しい表面を保ったまま突き板をホットプレス加工などで容易に得られるようにしたものである。つまり、スライスした木材の薄板に含浸させた透明のプラスチックフィルムとともにその上に接着された伸度0.00%以上の透明のプラスチックフィルムでこれを実現したものである。木材そのままであれば複雑な形状をなすが、これにより木材が平滑なので容易に得られ、さらにプラスチック含浸のため突き板自体が通常の突き板よりも光透過性が高く、それを利用するランプシェードなどの用途にも適している。

人工的で無機質なガラス、金属表面や塗装面といった物に代わって、自然の産物である木材の美しい木目を色々な工業製品に用いることは、特に日常的な身の回りのもの、家具や自動車のインテリアなどに好んで使われている。高度の印刷技術によりこのような表面を作ることも可能であるが、木材の突き板で得られるという点は希少な天然木材の有効活用という観点からも歓迎すべきものである。

本発明に例示されているように、自動車のハンドルやシフトノブなどに限らず、従来は曲げ加工の困難さゆえにほとんど平面上に近いという形状に制約のあった家具や音響製品の窓体なども、もっと自由な曲面を多用したデザインが可能になり、生活に一層の潤いをもたらすことが可能になる。
特 許 情 報

・権利存続期間：日々ヶ月年
・実施段階：試作段階
・技術導入時の技術指導の有無：応相談
・ノウハウ提供：応相談
・ライセンス制約条件：許諾のみ

・出願番号：特願（）
・出願日（）

・公開番号：特開（）
・公開日（）

・特許番号：特許（）
・登録日（）

参考情報

・特許流通アドバイザーによる推薦
・関連特許：あり
・お問い合わせ先：（）

皆様からのお問合せを、お待ちしています。

特許流通データベース情報

・タイトル：三次元成型可能な天然木突き板及びその製造方法
・ライセンス番号：（）

これからご覧になれます。
腐食性液体にも対応でき保守作業も容易な液粘度測定装置

出願人：学校法人日本大学

本発明は、液体試料の粘度を測定する方法であり、測定容器内の液体表面に低周波音波を当てて波を発生させると同時に、同じ表面にレーザ光を照射し発生した波による反射レーザ光の乱れ（変位）を測定するものである。この変位すなわち液面の変動は一般に液体の粘度が高いほど大きく、粘度が高いほど小さくなる。

9〜10 kHzの周波数の低周波を当てると、他の高い周波数に比べ液面の変動が大きく、結果として検出感度が高くなる。発信器、スピーカで作られた低周波音波は、パイプ状の音波導波管を経由して液表面に当てられる。また、レーザ光による変位測定装置は、適当な間隔でパルスレーザ光を発振させる送信部とその反射光を受信して光電信号に変換する受信部で構成される。

原理的には低周波音波による液面での波の発生があればよいことから、測定可能な粘度領域は極めて広範囲となる。また、対象液体は静止状態であっても、流動状態であっても測定が可能である。重要な測定部位を試料液中に設置するタイプである既存の粘度測定装置に比べ、本装置は液体に対して測定部位は接触しないタイプであるため、対象液体の腐食性が強くても何ら問題なく、また装置のメンテナンスも容易である。

液体の粘度測定は、化学工業、食品工業、医薬品製造工業などにおいては、反応管理、品質管理などの面で重要である。これらの分野では腐食性液体を取り扱う場合も多く、また品質管理上は外部からの汚染を極力避ける必要がある。本装置は非接触タイプであり、これらの課題を完全に解決できる。また、実際の使用を考えると、保守も容易な装置が当然好まれるが、本装置は、液による汚染が容器に限定されるため、例えば、対象液体の切り替えに際して、容器のみを多数用意することか、容器のみを洗浄することで対応が可能であり、食品工業や医薬品製造工業などの他品種生産現場への対応性が極めて高い。装置を工夫することで、連続プラントでのオオライン粘度測定にも使用できる。また、当然研究室等での対象液体が特定されない場合でも使用できる。

用語解説

レーザ光
気体、液体、イオン含有透明結晶、ガラス、半導体等から発振され、指向性、単色性、光強度などに優れる

粘度計
液体の粘性を測定する装置で管粘度計、落球粘度計、回転粘度計、平行粘度計などがある

低周波
通常は人が聞き取れない領域である 9kHz以下の周波数の音波を指す
特許情報

・権利存続期間：出願中
・実施段階：試作段階
・技術導入時の技術指導の有無：応相談
・ノウハウ提供：応相談
・ライセンス制約条件：許諾のみ

参考情報

・特許流通アドバイザーによる推薦
・関連特許：なし
・参照：なし

皆様からのお問合せを、お待ちしています。

□ この特許の問合せ先 □

日本大学産官学連携知財センター
小澤 春雄
〒113-8655
東京都千代田区九段南1-8-6 日本大学会館
電話：03-5804-4600
FAX：03-5804-4601

もしくはお近くの特許流通アドバイザー
(問い合わせをご覧下さい)にご連絡下さい。
竹炭ミネラルウォーターの短時間、量産製造法

特 権 権 者：若槻 群逸

本発明は、ミネラル成分を豊富に含むという竹炭を飲料水に浸漬し、煮沸することでミネラルウォーターを作る方法を示すものである。

竹炭でミネラルウォーターを作ることが自体は良く知られていることだが、これまでの方法では固形の竹炭を一旦煮沸して2～3日陰干しにし、これを半日～1日水に浸すというものであり、到底量産には向かないものであった。また、竹炭を細かく砕いてやれば浸漬時間は短くなるが今度は炭の黑色素のために水が汚れてしまうという問題があるので、これを解決するための工夫である。

具体的にはフィルター素材の袋にメッシュを用いて固形の竹炭粉末をじっくりと詰め、さらにステンレス製の容器に入れて沸騰した飲料水に沈めて煮沸し、ミネラル成分を溶け出させることで、その効果は従来の方法では数十時間を要した工程が大幅に縮短され、しかも成分はこれまで以上に豊富に溶出していることが確かめられている。フィルター素材の袋を用いるので、従来では大掛か長時間浸漬していったものを煮沸で短時間に成分を溶出させても黑色素が汚れないのどろその後の漉過工程も省略することができる。

また、使用する炭粉末を増量すれば浸漬の時間をさらに短縮、即製することができる。

一般にミネラルウォーターは、産地によって違いはあるがカルシウム、マグネシウム、ナトリウム、カリウムなどの成分が数%～数十%含まれている。我国の都市部の水道水は非常に衛生的に供給されているが、飲料水としてのみた場合、これらの成分による風味や、時として水道水に含まれる塩素臭が嫌われるために近年ミネラルウォーターの消費量はこの50年間で約2倍以上に増えたという。

このような背景から、必ずしも天然水ではなく、有効成分が豊富な上、有害成分を吸着する働きを期待できる竹炭浸出ミネラルウォーターも市場化が期待できるものといえよう。

本発明は従来の手作りに近い竹炭ミネラルウォーターを連続的に大量生産できる方法を示したものであり、時宜を得たものであると言える。また、竹炭の還元外線・抗菌作用が免疫力を高め、伝染の整腸効果など竹炭固有の付加価値イメージのミネラルウォーターといえる。
特許情報

- 権利存続期間：平年 関月 平 年
- 実施段階：実施無し
- 技術導入時の技術指導の有無：応相談
- ノウハウ提供：応相談
- ライセンス制約条件：譲渡または許諾

参考情報

- 特許流通アドバイザーによる推薦
- 関連特許：なし
- 特許番号：
- 登録日：平年 関月 平 年

皆様からのお問合せを、お待ちしています。

この特許の問合せ先

若槻 群逸
〒 〒〒〒〒
新潟県三条市本町 - -
電話番号： 、 、
問合せフォーム： 、

もしくはお近くの特許流通アドバイザー
(をご覧下さい)にご連絡下さい。
穴を開けてねじでとめれば絶対に抜けない送水ホースの連絡用フランジ

出願人：株式会社山辰組

送水用のホース同士をフランジで連結するという用途は少なくないが、このホースは通常柔軟なゴムやプラスチックできており、多くは金属性であるフランジとの結合は、しっかりと付いていなければ送水圧力などで緩んで外れてしまう恐れがある。

このため、例えばフランジのホースと接続する円筒部に三角形の溝をつけてホースの空ける方向には抵抗を持たせるようにし、且つホースの外からクランプのようなものを使ってホースを締め付けるのが普通である。

しかし時には通水中にホースを移動する必要があり、その際、クレーンでホースを吊り上げるが、連結部がフランジから外れ、水を撒き散らし工事が中断することもある。

本発明はこの問題を解決するためにフランジの円筒部とホース差込部の両方に穴を開け、ボルトで両者を固定して抜けなくするという方法をとっている。

このため、仮に水圧でホースが膨らもうとしてもボルトで固定されているため一定以上には膨らまず、仮に円筒部より太くなっても連結部からの水漏れが生じることはあってもホースが外れるということはない。

円筒部はホースの内側あるいは外側に挿入することもできるが、いずれも円筒部にねじを切ることで容易にボルトが外れまたは内側から絞められ、また別のナットやワッシャを使って締め付けることも可能である。円筒部を二重にしてホースをこの隙間に挿入する方法も示されており、一層容易にボルトを使って連結することができるのである。

ユーザーや界

活用アイデア

土木・建築 化学・薬品

流体配管用のホース連結フランジ

十着可能な柔軟なホース同士の連結に、本発明の構造を取り入れる

ホース連結フランジ部品の標準化

ホースと連結フランジの固定穴位置を標準化して部品として供給する

送水用ホースは、一般の水道などより、もっと水圧が高く送水量も多い場合に連結部の問題が生じる。

例えば水槽からポンプを使って大量の水をくみ上げるような場合、ホースの径が□□□□や□□□□□という場合には連結部が外れるに一旦水を止めめて連結し直すには多少な時間のロスが生じる。ある程度大きなホースの時は、本発明の止めねじもそれほど水流に対して邪魔にはならず、通常使用されるいわゆるたけのこ状の円筒部に比べても単位穴を開けるか、ねじ穴を切るかという簡単な構造でありながらホースの抜け止めには非常に大きな効果がある。しかも、ホースの肉厚が違うものである、あるいはジャバラ形状のホースの場合でも、内側からでも外側からでも簡単に補助金具を使っ

ボルトで固定できるので、寸法形状をある程度標準化すれば非常に多くの場合で利用できる。

もちろん相手は水とは限らず、さまざまな流体に応用できることはいうまでもない。

用語解説

蛇腹
（ジャバラ）布、革、ゴムなどの管を輪方向に山型に幾つも折り目をつけ、仲直しや曲げができるようにしたもの

補陥
特許明細書特有の用語で、差し込んだものを

バッキン
機械の部品、流体が流れないようにシールする物で、着脱や運動部分に使われる物をバッキンという
特許情報

・権利存続期間：出願中
・実施段階：実施有り
・技術導入時の技術指導の有無：無し
・ノウハウ提供：有り
・ライセンス制約条件：許諾のみ

出願番号：特願 00000000
出願日 0000年00月00日

公開番号：特開 00000000
公開日 0000年00月00日

特許番号：出願中
登録日 出願中

参考情報

・特許流通アドバイザーによる推薦
・関連特許：あり
・ generalize 00000000

皆様からのお問合せを、お待ちしています。

この特許の問合せ先

株式会社山田組
代表取締役 馬渕 和三
〒 00000000
岐阜県高山市大野町大字稲田 0000-0000
電話 000-0000-0000
ファクス 000-0000-0000

もしくはお近くの特許流通アドバイザー（000-0000をご覧下さい）にご連絡下さい。

特許流通データベース情報

・タイトル：送水ホース、パイプの連結具と連結工法
・ライセンス番号： 00000000

これらをご覧になれます。
電源コードプラグをホコリおよび破損から守る巻取装置

出願人：森 勝司、森 美喜雄

温風ヒータ、扇風機、ヘアドライヤー、ミシンおよびパソコン等は電源コードプラグから電力が供給されている。常時接続されている場合は良いが、電源から電源プラグを取り外された状態や機器を収納する場合はプラグが外に露出した状態になりホコリ付着および破損する場合がある。この状態を守るための収納巻取装置を考案し、円筒状コードリールで電源プラグを確実に固定した状態で電源コードと共に巻取装置に収納するものである。巻取装置は内部が目視できるよう透明な材質で構成され、電源プラグの収納部が巻取装置の中の近い場所にあり、係止部で固定する。リール外周壁に沿って電源コードが巻かれる。巻き取り方法は手動か自動回転するようにパネ付追するなどして自動巻取可能な構成としても良い。または、電気的に駆動してリールを回転させる駆動装置を用いても良い。

本発明は、家庭用の電気機器で電源コードを用いる電気機器であればいずれにも使用可能であって、巻取装置の寸法を適宜変更することで使用可能である。また、巻取装置は掛け具で保持するか、電気機器に巻取装置を磁石で取り付けるか、接着剤で固定するかは電気機器によって異なる。

家庭用電気機器の中でも冷蔵庫のように常時使用するものの、扇風機のように季節により使用するものの、ヘアドライヤーのように毎日使用するもの、また、工事用の電源コード、コンピュータではケーブル、ケーブル等の多くのケーブルが使用されている。これらのコードまたはケーブルの先端または両端にはそれぞれのプラグが装着され、電源を供給されたり、信号が供給されている。これらの電気機器で常時使用し、プラグが接続されている場合は、コードの処理が問題となる。季節により収納する電気機器は、コードとプラグの安全な収納が問題となる。常時使用する電気機器はコードの処理、プラグの安全な確保が必要となる。プラグを持つコードを安全に巻き取る巻取装置として、これらの一部の処理を可能とした。

用語解説

コンセント
コンセント・プラグを略した和製英語。屋内配線で電気器具とコードでプラグに付けられた接続口

リール
糸、電線等を巻き取る器具

プラグ
電気器具で、回路を接続し、あるいは切断するために用いる差込み器具
特許情報

・権利存続期間：出願中
・実施段階：実施有り
・技術導入時の技術指導の有無：応相談
・ノウハウ提供：応相談
・ライセンス制約条件：許諾のみ

出願番号：特願〇〇〇〇〇〇〇〇〇〇〇
出願日：〇〇〇〇年〇〇月〇〇日

公開番号：特開〇〇〇〇〇〇〇〇〇〇〇
公開日：〇〇〇〇年〇〇月〇〇日

特許番号：出願中
登録日：出願中

参考情報

・特許流通アドバイザーによる推薦
・関連特許：あり
・出願：〇〇〇〇年〇〇月〇〇日

皆様からのお問合せを、お待ちしています。

この特許の問合せ先 □
森 美喜雄
〒〇〇〇〇〇〇
岐阜県大垣市千鳥町〇〇-〇〇-〇〇

もしもお近くの特許流通アドバイザー（〇〇〇〇をご覧下さい）にご連絡下さい。
微小孔の寸法調整して微小流路と組み合わせ、脂質の量や液体導入圧力を制御した脂質二重膜の形成方法・装置

出願人：財団法人生産技術研究奨励会

従来のはけ塗り法とומは共に、チャンバ容量に無駄が多く、個々の電気生理計測は困難で再現性に乏しい。細胞膜に直接ガラス管の先端を接触させて吸引し、イオン量を膜電流として計測するパッチクランプ法には、物質輸送に関わる膜タンパク質に計測可能な膜電流の発生がない。テフロンシートなどに小孔を開け、脂質二重層を再構成する平面膜法は、再現性、安定性は低く、複数の脂質膜の同時再構成は至難である。

問題解決のため、基板（チップ）と、この基板上にマイクロ流路を形成し、このマイクロ流路に漏斗状の穴と微小孔を透通するように設ける。漏斗状の穴を単位として形成されるチャンバとチャンバ内圧力調整手段を持つ、微小孔を複数個配置する。チャンバ側とマイクロ流路側にそれぞれ配置されるマイクロ電極と、このマイクロ電極に接続されるパッチクランプ增幅器を備えることで、脂質二重膜の電流が測定可能となった。

すなわち、小型チップ上に再現性良く、安定して脂質膜を再構成できる計測プラットフォームを実現した。微小孔のサイズを調整し、平滑面の安定化を図り、微小流路と組み合わせ、脂質の量や液体導入圧力を制御した結果、再現性が向上した。さらに物質輸送イメージングが選択的に行えるようになった。

用語解説

マイクロカプセル
大きさ数ドミーを数百万の範囲にある容器の総称である。
内部に入れる物質を管に入れるためとなる

表現力
分子間に作用する力で、分子同士が引き合い凝縮する。
表面を極小化しようとする傾向を持つ液体の性質

ノズル
流体の流動方向を定めるために使用されるパイプ状の機械部品。
流量、流速、方向、圧制御に使用される

芳香性物質
木香や脱離微生物から発酵・生成される人間に好ましい香りを有する物質の総称でベンゼン環を有する

本発明による装置のガラス基板側の流路から成膜成分と匂い成分を含むパッファ液を供給し、脂質二重膜に限らず安定した膜を形成することができる。ロートの広がりを制限した種々の構成を持つマイクロカプセルが、微小穴には表面張力で再び膜ができる。これによりシャボン玉が流通できるので同じ原理である。膜の場合は微小穴直下に設けたノズルから膜を破壊しない程度に持って込みマイクロカプセルする。このマイクロカプセルを紙等の基盤に貼り付け製品化する。郵便では封筒の封止部に、宅配・小売店では荷物や商品の梱包に適用できる。押し付けるだけで接着でき、作業効率が良くなるので該当業界への受け入れは可能である。現在の流通状況では市場規模は年間数億円以上と見込まれる。
特許情報

- 権利存続期間：出願中
- 実施段階：試作段階
- 技術導入時の技術指導の有無：応相談
- ノウハウ提供：応相談
- ライセンス制約条件：許諾のみ

参考情報

- 関連特許：なし
-
- 参照可能な特許流通支援チャート
 - 16年度 化学4 有機 一般素子
 - 16年度 電気29 電気二重層コンデンサ
 - 17年度 一般18 ナノ粒子製造技術

皆様からのお問合せを、お待ちしています。

この特許の問合せ先

財団法人産業技術研究奨励会
産学連携支援室
室長 阪井 眞人

〒108-0075
東京都目黒区駒場 8-3-6
産学連携支援室
電話番号 03-5743-8888

もしくはお近くの特許流通アドバイザー（下記をご覧下さい）にご連絡下さい。

特許流通データベース情報

- タイトル：脂質二重膜の形成方法およびその装置
- ライセンス番号：

からご覧になれます。
熱電変換素子を利用し水蒸気を凝縮して水を製造する装置

出願人：国立大学法人鳥取大学

ベルチェ素子などの熱電変換素子を利用し、大気中の水蒸気を凝縮させて水を得る造水装置である。

本発明の特長は、散水ユニットを積み重ねる構造とすることによって装置の単位面積当たりの水蒸気の凝縮面積を大きくすることが可能となり、造水量の増加を実現できることである。高温、低湿度の空気が特長的な砂漠地帯などでは、人間や動植物の生存に必要な水を確保することは非常に困難であるが、この特長を活かして空気中に含まれる水蒸気を効率よく凝縮させることにより液体としての水が回収できる。原理的には熱と電力を変換できる熱電変換素子により電力を熱的なエネルギーに変換するものである。構造は、熱電変換素子としてベルチェ素子を用い、冷却用ファンを内蔵した冷却用フィンブロックに対応する形で放熱用ファンを内蔵した放熱フィンブロックを配置し、その間にベルチェ素子を設置したものとなる。

本発明の特長は、この造水ユニットを平面的、立体的に重ねて配置し単位面積当たりの造水能力を上げて、効率よく大気中の水蒸気を凝縮させて水を製造することができる。従来の造水装置では、一対のベルチェ素子の各々の放熱側面に放熱フィンを設けて、1個の吸熱フィンが2個のベルチェ素子によって冷却される構造であったり、ベルチェ素子を直列に2個配置してそれぞれ異なる電圧で駆動するなどの方式が採用されてきたが、本発明はこれらの欠点を解決したものである。

<table>
<thead>
<tr>
<th>ユーザー業界</th>
<th>活用アイデア</th>
</tr>
</thead>
<tbody>
<tr>
<td>電気・電子</td>
<td>計装パネル内の空気調和</td>
</tr>
<tr>
<td>情報・通信</td>
<td>冷却源としての用水が確保できない場合、温度条件の制限の厳しい計装機器の保護のための空調装置とする</td>
</tr>
<tr>
<td>生活・文化</td>
<td>生鮮食品などの冷蔵</td>
</tr>
</tbody>
</table>

本発明は熱電変換素子を利用して大気中の水蒸気を効率よく凝縮させて液状の水を得るものである。この特長としては、ユニットを積層化することによって、単位面積あるいは単位体積当たりの高い凝縮能力を発揮することにある。

本発明では、水を得ることを目的としているが、大気の側から考えると水蒸気を取ることによって大気中の湿度は下がり、乾燥した空気が得られることになる。本発明の応用的な展開を考える場合は、大気中から液状の水を得る技術と合わせて大気中の水分を低下させる技術としても考えることができる。電気エネルギーを蒸発熱あるいは凝縮熱などの熱エネルギーに変換して活用することであるが、目的や条件に合わせて有効な手段となり得る。また、水だけでなく凝縮性的各種化学物質にも応用が可能である。
図1 多段式造水装置の外観図

図2 砂漠化防止・砂漠緑化支援技術パッケージ

特許情報

・権利存続期間：出願中
・実施段階：実施無し
・技術導入時技術指導の有無：応相談
・ノウハウ提供：応相談
・ライセンス制約条件：許諾のみ

参考情報

・関連特許：なし
・用途：なし

皆様からのお問合せを、お待ちしています。

この特許の問合せ先へ

鳥取大学 産学連携推進機構
知的財産管理運用部門
部門長 佐々木 茂雄

〒 614-0083
鳥取県鳥取市湖山町南 -

もし近くにお住いの際は
特許流通アドバイザー
をご利用下さい。
（ご質問を受け付けております）
鉄筋コンクリートまでの距離を高精度に保持できる型枠用スペースを用いた鉄筋コンクリート構造物の製法

特 許 権 者：木下 茂、木下 元伸

鉄筋コンクリート構造物において目的とする強度と形状を実現するためには、鉄筋を組んだ配筋に対して、その周りを覆うようにコンクリートを打設する際に、鉄筋の表面からコンクリートの表面までの距離（コンクリートのかぶり厚さ）を精度良く設計値に合わせることが重要である。このため従来は、型枠に沿って型枠を固定する、型枠に円環状のスペースを外むみ着してスペースの外周面に型枠を当接させる、型枠に当接させたコンクリートブロックからプレ製金属管を突出させて鉄筋を挟み込む等により、かぶり厚さを保持する方法が採用されてきたが、これは、構造複雑、部品点数多・施設面倒、かつかぶり厚さが大きく大径化すると重量大・悪作業性、かぶり厚さが大きい場合、ブロックの大型化により、ばね部による挟み込みだけで鉄筋に固定困難・一箇所毎に手作業で工期の長期化等、いずれの方法も問題点が多かった。

本発明は、幅・厚さ・密度程度の長手板形状の支持板金具の長手方向中間部を鴨曲状に折り返して鉄筋に係止させる一方、折り返し側の一端を型枠に当接させ、他端に固定したスペースブロックを対称側の型枠に当接させる型枠用スペースを用いたことにより、所定のかぶり厚さを精度良く保持でき、長手状の支持棒の折り返し位置を変えれるだけで種々のかぶり厚さに対応可能、作業性高、標準品の大量生産により安価等の特徴を有する。

ユーザー業界

活用アイデア

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>土木・建築</td>
<td>型枠の位置決め</td>
</tr>
<tr>
<td>生活・文化</td>
<td>大イベント用の簡易組み立て構</td>
</tr>
<tr>
<td>食品・バイオ</td>
<td>侵入防止用の簡易組み立て構</td>
</tr>
<tr>
<td>その他</td>
<td>アートソーロックの芯保持用サポート</td>
</tr>
</tbody>
</table>

本発明は、コンクリートの型枠の位置決め用スペースであり、コンクリート打設後はコンクリート内に埋設されるが、本品の組み立・解体の簡便な特徴を生かして、例えば大イベント時の大衆整理用の簡易組み立て構、または防音用（鹿・鹿等）の侵入防止用簡易組み立て構として農作物の保護等に利用できる。さらには例えば結婚式の大ローソク等を枝分れた樹状の形状をし、各枝にローソクの芯を通すその先端に一斉に火を灯せるアートローソクとし、各枝のサポート用としてローソク材より若干融点の高い材質のサポート形状ます。ローソクの燃焼・消耗に伴いサポート材も溶融・消滅するような用途にも応用できる。なお、コンクリート構造物用の生コンクリートの出荷額は約1兆円/年であり、総産品 工業統計表（2003年）、本サポートがその20%と仮定すると2000億円/年であり、本サポートの市場模態は約2000億円/年程度と推定される。
特 許 情 報

・権利存続期間： ☐年 ☐ヶ月 ☐月 ☐日
・実施段階：実施有り
・技術導入時の技術指導の有無：有り
・ノウハウ提供：有り
・ライセンス制約条件：譲渡または許諾

参考情報

・特許流通アドバイザーによる推奨
・関連特許：なし
・□□□□□□□□□□□□□□□
・参照可能な特許流通支援チャート
 ：15年度 機械12 易解体固定技術

皆様からのお問合せを、お待ちしています。

□ この特許の問合せ先 □

木下 茂
〒 ☐ ☐ ☐ ☐ ☐
三重県伊勢市竹ケ鼻町 ☐ ☐ ☐ ☐
☎ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐
fax ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐

もしくはお近くの特許流通アドバイザー
(☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐)にご連絡下さい。
どこでも安全に利用できる栽培用土

出願人：国立大学法人島根大学

本発明は、河川や湖沼、ダムなどに溜まっている無機成分がその泥の構成成分のほとんどであるヘドロの処理方法に関するものである。

本発明は、ヘドロを以下のような低温で水分を飛ばしながら造粒して一次固化し、得られた粒状固形物を水洗することにより除塩および脱硫し、さらにその粒状固形物を以上の温度で炭化水素を抽出しつつ二次固化して無害化し得ることを特徴とするヘドロ処理方法である。本発明では、造粒固化過程で粒中の通水経路を通じて表面に集まった塩と硫化物を水洗のみにより簡便に除去できるため、塩害の発生しにくい土を得ることができ、また、脱硫してないので負の高い炭化水素を得ることができる。そして、造粒により水洗の際の表面の水の流れが良好である場合に比較して良く、水洗による脱塩、脱硫を効率的に行うことができる。さらに一次固化時には以下の低い温度で加熱するため炭化水素の溜出を防ぎ、二次固化の際炭化水素を最大限抽出することが可能となる。また、抽出した炭化水素は熟処または動力源として使用することが可能である。

ユーザーリスト

<table>
<thead>
<tr>
<th>ユーザー業界</th>
<th>活用アイデア</th>
</tr>
</thead>
<tbody>
<tr>
<td>土木・建築</td>
<td>再生土を用いた観葉植物栽培セット</td>
</tr>
<tr>
<td>生活・文化</td>
<td>そこで、観葉植物などの栽培セットに利用可能</td>
</tr>
</tbody>
</table>

菌類を保持させた有機物処理材料
|- 処理後の粒状体に菌類を保持させ、選択的に有機物の分解を促進できる土を提供する

本発明は、ヘドロからエネルギーを抽出して造粒し、環境に負荷をかけない土へ再生する技術に関するものである。

河川や湖沼、ダムなどに溜まっている無機成分がその泥の構成成分のほとんどであるヘドロは、塩化物を含む場合があり、塩素イオンが流出するなど、特に農業においては塩害が発生するなどし、また、内湾、汽水域にあるヘドロは多量の塩分を含むため、コンクリートなどの使用も不向きであった。本発明の処理方法による造粒では、簡便に塩化物、硫化物の除去ができるため、塩害の発生しにくい土を得ることができる。また、造粒の際の負荷を少なく、水洗効率を高めることができ可能であり、一次固化を2〜5日に造粒することにより水が清く、圃場用や農業用への利用が期待でき、肥料となる化学物質と混合するなどして、観賞植物栽培用の土としての利用も期待できる。
特許情報

・権利存続期間：出願中
・実施段階：実施無し
・技術導入時の技術指導の有無：応相談
・ノウハウ提供：応相談
・ライセンス制約条件：譲渡または許諾

参考情報

・関連特許：なし
・○○：なし　○○○

皆様からのお問合せを、お待ちしています。

この特許の問合せ先 □

国立大学法人島根大学
産学連携センター
教授　阿久戸　敬治
〒 〒〒〒〒〒〒〒〒〒〒
島根県松江市北陵町 □

もしくはお近くの特許流通アドバイザー（□□□をご覧下さい）にご連絡下さい。
高所や水中等でも安全確実に操作可能なシンプルな
吊り具

特 許 権 者：尾崎 吉徳、尾崎 真里子

本発明はクレーン等による荷扱い作業において使用される吊り具に関する発明で、構造が大ましくシンプルでありながら極めて安全性が高く、且つ作業性に優れた吊具を提供するものである。従来クレーン等に使用される吊り具については、各種要因が含まれており、それぞれに特長を持った吊り具が使用されてきた。最近特に要求が高まっている省力化と安全第一の考えに基づいて本発明はなされた。

本発明の特長は①人為ミスによって、荷物を吊り下げた状態でフックが開いて吊り荷が落下することが絶対にないこと②荷を吊り下げる前、あるいは荷吊り上げが終わり、荷を目的の所定位置に降ろした段階で簡単な操作によってフックを開放し荷を確実にフックから外せるという二つの大きな特長を有する。

本発明の技術的ポイントは荷を吊り下げた状態では荷重は常に吊り荷具よりはるかに重いという理屈に基づいている。

本発明に依れば荷を吊り下げている場合、レバーを荷重がしっかりと押し上げているため、フックが外されることない。一方荷を吊り下げる場合は補助ワイヤーを遠隔的に引っぱることによって容易にフックは開放し、吊り下げワイヤーを容易にフックから外すことができる。

ユーザー業界

| 電気・電子 | 機械・加工 |
| 生活・文化 | その他 |

活用アイデア

<table>
<thead>
<tr>
<th>結合器</th>
</tr>
</thead>
<tbody>
<tr>
<td>他力が働く下で、抵抗の力だけでは開放されない安全確認な連結器、登山具、ビル清掃、熱気球等に利用可能である</td>
</tr>
</tbody>
</table>

釣り具

| 大型の魚類、例えばマグロや鯨などの釣り具として、若干の工夫を追加することにより利用が可能である |

加重が掛かっているときには絶対に開放することができない。加重大けは漸増されずに容易に開放できるか、または他の作業が可能となる活用分野は色々と考えられる。1 つはビルの清掃に使用されるゴンドラ等の吊り下げ具としての応用、熱気球等のゴンドラの下に吊り下げ具としての応用である。2 つ目は、特にフライ船等に多く使用されるロープによる張力支持とその開閉に本発明が応用可能である。また同様な応用例としてロッシクライミング等に使用される登山ロープの連結器具としての応用。3 つ目は電気工事において電柱等の高所から荷を一時的に吊り下げる場合の吊り下げ具としての応用。4 つ目はマグロや鯨等大型魚の釣り具としての活用が考えられる。さらに他の応用例としては機構を追加組み合わせることによって工場や遊園地などで使用できる車両連結の応用が考えられる。
特別情報

- 権利存続期間：○○年 ○○ヶ月 ○○日 ○○日
- 実施段階：試作段階
- 技術導入時の技術指導の有無：応相談
- ノウハウ提供：応相談
- ライセンス制約条件：許諾のみ

出願番号：特願 ○○○○○○○○
出願日：○○○○○○○○

特許番号：特許 ○○○○○○
登録日：○○○○○○○○

参考情報

- 特許流通アドバイザーによる推薦
- 関連特許：なし
- 特許：○○○○○○

皆様からのお問合せを、お待ちしています。

この特許の問合せ先●

尾崎　吉德
〒 ○○○○○○
山口県下関市筋川町 ○○○○
☎ ○○○○○○○○○○

もしくはお近くの特許流通アドバイザー（○○○○○○をご覧下さい）にご連絡下さい。
繰り返して、地震発生時等の振動エネルギーを吸収できる建築構造物の部材を製造する

出願人：国立大学法人東京工業大学

金属材料は過大な変動荷重を受けると塑性変形してそのエネルギーを吸収する。鉄骨構造物では間柱の一部に塑性変形し易い金属材料を組み込んでエネルギー吸収部材（せん断パネル）とし、地震発生時における構造物の振動を減少する工法が採用されている。せん断パネルには降伏点の低い特殊な鋼板が使用される。

しかし、一部に板枠を用いた場合には塑性変形においては座屈が発生しないが変形の関係が不定をなる。厚板の場合には変動荷重を受けて繰り返し塑性変形すると変形が急速に進行し鋼板が破断することがある。このため、地震等で塑性変形したせん断パネルは次の地震に備えて交換する必要があった。

本発明は塑性変形に替えて、面外の座屈変形により安定的にエネルギー吸収を図るものである。すなわち、地震等で予想される変形の2～3倍のせん断変形を予めせん断パネルに付加して座屈させてからエネルギー吸収部材として構造物に組み込んでおくと、以後、繰り返し変動荷重を受けても安定的な座屈変形によって振動エネルギーを吸収できるようになる。本発明によると、地震や台風を繰り返し受けても、エネルギー吸収部材を交換する必要が無く、せん断パネルには低降伏点材料のようないろな高強度鋼材を必要とせず、一般鋼材、アルミあるいはその合金で構成できる。せん断変形させるときに、材料特性（荷重～変位曲線）を収集しておくことが可能なので、より確実で安全な構造設計が可能になるなどの特徴を有する。

ユーザーや界

活用アイデア

- 風力発電装置の耐震構造
- 風力発電装置のタワーに振動エネルギー吸収部材を取り付け耐震性を増強
- 船体の耐波波、耐衝撃構造
- タンカーの外板、隔板構造に組み込み、大きな波浪を受けたときの座屈、亀裂破壊を防止する
- 海底石油生産プラットフォームの対波浪構造
- 洋上プラットフォームの海中構造物に組み込み、耐波浪強度を増强

地球温暖化の影響を受けて風力発電に対する期待が世界で高まっているが、日本では停滞気味である。その原因の1つに、風力発電設備に対して超高層ビルと同じ耐震基準が適用されることになったことが挙げられる（朝日新聞：）。羽根の直径が風車の大型風車には台風や地震の発生時に大きな水平方向の変動荷重が作用する。この変動荷重によるタワーの倒壊を防止する手段として本発明が期待される。風力発電のコストは減少の一要因（三菱総研）、その20%が風車本体とされるので、2013年度の風力発電規模を10万MWとすると（朝日新聞）と2010−2020億円の市場規模を予想される。ただし、国内メーカーのシェアは6%と低いので海外メーカーへの機会も必要である。

将来は、設置地点の制約から洋上風力発電が注目される。その場合、波浪による変動荷重が予想されるので本発明の利点がさらに高まると予想される。
特許情報

- 権利存続期間: 出願中
- 実施段階: 試作段階
- 技術導入時の技術指導の有無: 応相談
- ノウハウ提供: 応相談
- ライセンス制約条件: 譲渡または許諾

出願番号: 特願 0000000000
出願日: 平 xxxx年xxx月xxx日

公開番号: 特開 0000000000
公開日: 平 xxxx年xxx月xxx日

特許番号: 出願中
登録日: 出願中

参考情報

- 関連特許: なし
- 平年月日
- 参照可能な特許流通支援チャート
 : 17年度 機械15 風力・波力原動機

皆様からのお問合せを、お待ちしています。

この特許の問合せ先

国立大学法人東京工業大学
産学連携推進本部
技術移転部門員
本田 奈緒子
〒 00000000
東京都目黒区大岡山- - -

もしくはお近くの特許流通アドバイザー (0000000000 をご覧下さい) にご連絡下さい。
対象物を複数の部分に分けて一度に撮影できる
撮像システム

特 許 権 者：財団法人ひろしま産業振興機構

従来、対象物を撮像するシステムは、対象物にカメラを向けて直接撮影するものが知られているが、このシステムでは、カメラを縦方向および横方向に移動させ、対象物を複数の部分に分けて撮影しなければならない。

本発明は、カメラを移動することなく、所定の領域を撮取する幅広い三次元画像として撮像されるように反射鏡を分割した簡単な構造で図1のように構成されている。従って、分割反射鏡を介するこの撮像では、対象物を撮影させながら、この方向と傾斜方向に広く延びる領域を同時に図2のように撮影することができる優れた撮像システムである。この分割反射鏡は受光レンズの中心軸と所定の反射鏡ほどで傾斜から始まって+5度ずつ角度を替え、2つまで合計9個の反射鏡で構成し、それぞれ15度と0度の短冊直線構造として図2に示すように配置し、カメラは対象物の表面所定領域9つの画像が同時に撮像できる。そして画素領域の情報を撮像された時間の情報に基づいてコンピュータ抽出し、撮像方向と傾斜方向に延びた画像として撮像方向に並べて映す。従って、カメラを縦・横方向に移動させる必要もなく、広範囲の画像を移動方向に順次撮影できる。対象物の撮影に搬送、反射鏡の工夫、コンピュータシステムを駆使して、広い領域の対象物を一度に撮影するので、表面の状況等の監視、チェックと広範圏に期待できる。

ユーザーや界

活用アイデア

プリント基板の組み立てチェックシステム

電気・電子

編集・加工

準製・加工

生活・文化

平面上に近い塗装完成品の表面チェック装置

平面、右側に近い塗装完成品の表面チェック装置

電気・電子

編集・加工

生活・文化
特許情報

- 権利存続期間：平成ヶ月平
- 実施段階：試作段階
- 技術導入時技術指導の有無：応相談
- ノウハウ提供：応相談
- ライセンス制約条件：許諾のみ

<table>
<thead>
<tr>
<th>出願番号</th>
<th>出願日</th>
</tr>
</thead>
<tbody>
<tr>
<td>特願00000000</td>
<td>平平平平平平</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>公開番号</th>
<th>公開日</th>
</tr>
</thead>
<tbody>
<tr>
<td>特開00000000</td>
<td>平平平平平平</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>特許番号</th>
<th>登録日</th>
</tr>
</thead>
<tbody>
<tr>
<td>特許00000000</td>
<td>平平平平平平</td>
</tr>
</tbody>
</table>

参考情報

- 関連特許：あり
- ①：②③④

皆様からのお問合せをお待ちしています。

この特許の問合せ先は:

財団法人ひろしま産業振興機構
技術振興部 ひろしま技術移転センター
野村 啓治

〒000-0000
広島県広島市中区千田町

もしくはお近くの特許流通アドバイザー（をご覧下さい）にご連絡下さい。

特許流通データベース情報

- タイトル：撮像システム
- ライセンス番号：00000000

からご覧になれます。
時間およびプランニング時間を組み入れた形状記憶合金アクチュエータの制御方法

出願人：国立大学法人大分大学

形状記憶合金（○○○）を利用した○○○アクチュエータは、既存の電動アクチュエータ、電磁アクチュエータ、電磁アクチュエータ、圧力アクチュエータ、油圧アクチュエータ等に比較して△外部センサが不要である。△機構がシンプルである、△バワーレシオが大きい、△ノイズレスである等の優位点を有することから様々な用途への適用が検討されている。

本発明は○○○アクチュエータに適した制御方法を提供するもので、その特徴は○○○ワイヤーの相変態および温度変化に伴う抵抗値の変化を位置と力の変化として捉え、その抵抗値を検知して通電加熱の○○○時間と通電○○○時間に制御し、所望の位置に相当する抵抗値を検出すると同時に通電を○○○し、再通電までの休止時間に複数に分かれた抵抗値の変化帯域に応じて通電○○○時間に伴う抵抗値を検出し、電流の立ち上がり時の抵抗値を検出しない（比較器が比較動作をしない）プランニング時間を設けた点にある。この制御方法により、低い抵抗特性とヒステリシスを持つ○○○ワイヤー特有の問題を解決して指令値に対し任意の位置決めを位置決めされた位置を長時間安定に保持でき、高精度な○○○アクチュエータの位置決め制御が可能になる。

用語解説

形状記憶合金
ある温度（変態点）以下で变形しても、その温度以上に加熱すると元の形状に回復する性質を持つ合金

アクチュエータ
入力されたエネルギーや物理的な運動に変換する機構で、物を動かしたり制御するために使用される

バワーレシオ
装置の重量をその出力で割った数値で、この数値が小さいほど高出力が出せる装置を表す

ユーザービジネス
活用アイデア

○○○アクチュエータの製造販売
○○○アクチュエータを製造販売

○○○アクチュエータ用制御装置の製造販売
○○○アクチュエータ用制御装置を製造販売

○○○アクチュエータ使用製品の製造販売
○○○アクチュエータを使用した製品を製造販売

特許請求の範囲

特許請求の範囲が「形状記憶合金アクチュエータの制御方法」とて経由乗って用途限定がされていないことから、本発明は広い分野で既存のアクチュエータに代わって適用が期待されている○○○アクチュエータの制御方法をカバーしている。

本発明の○○○アクチュエータは携帯電話およびデジカメ等のレンズ駆動、マニュピレータおよび内視鏡の方向制御、ヒューマノイドロボのリンク機構等に適用できるものであり、家電・○○機器分野、メディカル分野、産業分野等で利用される可能性が高い。例えば、デジタルカメラの○○年度の世界市場は1億台を超えるカメラレンズの調度携帯電話の世界市場は6億台を超えており、家電・○○機器分野だけでも膨大な市場が存在している。これに自動化およびロボット化が進む産業分野、マニュピレータおよび内視鏡を駆動した高精度・高信頼度の診断・治療が進む医療分野の市場が加わることになる。
特許情報

・権利存続期間：出願中
・実施段階：実施無し
・技術導入時の技術指導の有無：応相談
・ノウハウ提供：応相談
・ライセンス制約条件：譲渡または許諾

出願番号：特願 12000000
出願日：平成12年8月30日

公開番号：特開 12000000
公開日：平成12年8月30日

特許番号：出願中
登録日：出願中

参考情報

・特許流通アドバイザーによる推薦
・関連特許：なし
・No.：12000000

参照可能な特許流通支援チャート

16年度 機械7 12000000（マイクロ・エレクトロ・メカニカル・システムズ）
技術

皆様からのお問合せを、お待ちしています。

この特許の問合せ先 □

有限会社大分 12000000
甲斐 徹
〒 8000000

もしくはお近くの特許流通アドバイザー（□□□□をご覧下さい）にご連絡下さい。
光を用いた花の熟度の自動判別装置

出願人：国立大学法人岩手大学

リンドウなどの切花栽培において高収益を得るには探花の時期を適切に判断するだけでなく、出荷後急速に劣化して美観を損ねる受粉芽（過熟な花）を選別し、出荷前に可能な限りこれを摘み取ることが望ましい。現状ではこの作業を目視で行うため、熟練を要することと、作業の精度が不十分であることなどがある問題がある。

本発明は、植物の蕾に可視光から近赤外線領域の光を照射し、蕾表面の反射特性を微細な光の観察によって、受粉芽の熟度の自動測定装置を発表する。この方法は、受粉芽の熟度を把握し、収穫の適時（適熟）を計画するための農業技術である。本発明によれば熟練者でもなくとも高精度に、且つ迅速に商品価値を下げる受粉芽を検出、除去することができる。

ユーザーや活用アイデア

- 表面仕上げの粗さ制御法
- 花粉加工、あるいは工芸品の表面などの表面切削、研磨工程において目的の粗さに自動的に制御する方法
- 塗装面の劣化度を迅速、簡便に判断する装置
- 建築物の塗装面は紫外線などによる照射や劣化を防ぐが表面の微細なびび割れなどの発生を観察的、数値的に現わすことができ、しかも迅速、簡便、メンテナンスの効率、精度が向上する
- 花の状態の簡易診断器
- 人間の皮膚は健康の医療で微細な変化を起こす。また、老化的程度、皮膚の疾患の有無などを客観的に簡便に診断する機器

農産物、特に花卉類の品質管理が近年大きく進んでいる。なかでも光学的手法を用いた非破壊評価法（検査法）が普及しているが、波長ど○～ど○の領域、すなわち近赤外分光分析が良く知られている。近赤外分光分析の優れている点は迅速な測定（工程の自動管理が可能）、簡易で熟練を要しない、化学薬品などは全く不要、蛋白質、脂肪、水分などの成分が同時に計測できることなどである。

本発明は花の蕾の熟度を判断する目的に焦点を絞っているが、検出の仕組みは一般性のある方法なので、建築、金属加工、生活関連など他業種への応用が考えられる。切花の市場規模は平成ど○年度でど億～ど億万円、ど億～ど億円（卸売りベース）にのぼり年々上昇の傾向にある。

用語解説

受粉芽：被子植物の花から放出された花粉粒が柱頭に伝ばれ、受精が起こり、新しい植物体の形成が始まりつつある蕾

近赤外光：波長ど○～ど○の光線。生体分子への透過性が高く、生体内部までセンシングすることができる

バンドパスフィルタ：ある波長範囲の光を通じさせ、それ以外の波長域の光を遮蔽させるフィルタ
特許情報

・権利存続期間：出願中
・実施段階：実施無し
・技術入門時の技術指導の有無：応相談
・ノウハウ提供：応相談
・ライセンス制約条件：許諾のみ

出願番号：特願　出願日　公開番号：特開　公開日　特許番号：出願中　登録日：出願中

参考情報

・関連特許：なし
・範囲：なし　

皆様からのお問合せを、お待ちしています。

この特許の問合せ先

国立大学法人岩手大学
地域連携推進センター　知的財産移転部門
技術移転マネージャー
対馬　正秋
〒020-8505
岩手県盛岡市上田町
電話　019-865-2244　
FAX　019-865-2244

もしくはお近くの特許流通アドバイザー（　をご覧下さい）にご連絡下さい。
アルカリ現像でエッチング、微細加工可能なレジスト

出願人：日本曹達株式会社

半導体素子等の製造工程において用いられ、素子に従来、エッチングとしてケトンやアルデヒド共重合体が知られているが、特にアルカリ現像を行うエッチングに対しては、ポストエッチング後にはアルカリにより低分子量の化合物に分解された化合物が揮散するため、分解前の化合物の物性と比べ、大きく変化させることができない等の問題も抱えていた。そのような課題に対し、本発明では、ケトン、芳香族アルデヒドから容易に合成することが可能な新分子にエテル結合をもつ重合体のアルデヒドに由来する構造部分において、芳香族環上の置換基の位置の異なる織り返し単位の共重合体にすることでポリマー成分を複数有し、酸による分解で適当な分子量の化合物を残すレジスト組成物を作ることができる。これにより上記問題を解決し、アルカリ現像にも応用が可能で、しかも従来の化学增幅型レジストに比べても微細加工が可能な共重合体を提供することができる。

用户業界

活用アイデア

半導体製造用レジスト

半導体素子等の製造工程において、アルカリによる現像を行う場合に生じる問題を回避し、微細なエッチング効果的に行うことができる

機能性表面形成材料

機能性表面形成材料をあらゆる物品の表面に対し、光により例えば熟処理のような機能性をもたらすことが可能となる材料を提供することができる

用語解説

レジスト
光や電子線等により物性が変化する組成物で、物質表面に塗布され、エッチング処理等から物質表面を保護する

ケトン
構造式 (ケトン単量体) で表される化合物で、刺激性のある効力の高い有臭気の気体である

共重合体
共重合によって得られるポリマーの基本構造の一つ

元稿作成：尾崎 典明 システム・インテグレーション株式会社
特 許 情 報

・権利存続期間：出願中
・実施段階：試作段階
・技術導入時の技術指導の有無：応相談
・ノウハウ提供：応相談
・ライセンス制約条件：許諾のみ

出願番号：特願 □□□□□□□□□□
出願日：□□□□□□□□□□

公開番号：特開 □□□□□□□□□□
公開日：□□□□□□□□□□

特許番号：出願中
登録日：出願中

参考 情 報

・特許流通アドバイザーによる推薦
・関連特許：あり
・文書：□□□□□□□□□□

皆様からのお問合せを、お待ちしています。

この特許の問合せ先

株式会社ビジュナリー・ライセンシング・クラブ
代表取締役 延末 恵三
〒 □□□□□□□□
千葉県山武郡大網白里町木崎 □□□□- □
□□□ERVERS
魚に寄生する寄生虫の駆除や水中の除菌ができる

出願人：有限会社△△△

光触媒を用いて生成する活性酸素を、超音波を利用し水中に拡散し、水中の微生物の除菌、魚に寄生した寄生虫の駆除や原虫類の駆除を行う。図1に光触媒反応水生成装置、図2に魚に寄生した寄生虫の駆虫用に利用した例を示す。光触媒は、線維状光触媒を用い、実施例ではアルミナ繊維などの金属繊維等にチタニア被膜をコーティングしたものを、紫外線光源を取り巻くように円柱状に配設している。紫外線ランプから照射された紫外線を照射して、水中の溶存酸素量を高めた水から、光触媒により活性酸素種を生成する。容器内に設置した超音波振動子により超音波を発生させ、光触媒の上に生成した活性酸素種を超音波によって水中に拡散し、活性酸素種を含んだ光触媒反応水を効率よく生成する。光触媒反応水に含まれる活性酸素種は、非常に高い酸化力を持ち、水中の微生物や魚に寄生した寄生虫を殺菌・駆除することができる。魚の寄生虫の駆虫用の例では、水槽の水を光触媒反応水生成装置に循環させて、水槽に活性酸素種を溶存させ変わらぬ。また水槽の水を循環させる吸水ポンプと駆虫用光触媒反応水生成装置の間に、紫外線ランプにより紫外線を照射する殺菌灯を設置して、殺菌効果を一層向上させても良い。

<table>
<thead>
<tr>
<th>ユーザー業界</th>
<th>活用アイデア</th>
</tr>
</thead>
<tbody>
<tr>
<td>魚の養殖</td>
<td>魚の養殖場の生け簀に、回転駆動する可視光でも効果が良い光触媒シートを設置して、魚に寄生する寄生虫を駆除する</td>
</tr>
<tr>
<td>活魚料理店の生け簀</td>
<td>高級鯉料理店での生け簀に設置して、高級鯉を死なないように保護する</td>
</tr>
<tr>
<td>バラスト水の殺菌・駆虫</td>
<td>バラスト水中の原虫・殺虫は、環境問題として大きな懸念事項である。光触媒反応水生成装置を設置し、バラスト水中的原虫を駆除する</td>
</tr>
</tbody>
</table>

魚資源の保護のため、今後ますます魚の養殖が拡大すると思われるが、養殖魚を損傷することなく、環境に影響を及ぼさない、効率の良い駆虫・殺菌法の実用化が必要である。従来過酸化水素水を利用した方法などがあるが、効果を示すには高濃度を必要とし、大量の過酸化水素が必要であった。また光触媒を利用する方法では、光触媒体の表面近傍しか活性酸素種は有効でなく効果が高くなかった。

本発明は、超音波を利用して、光触媒体表面で生成した活性酸素種を水中広くに短時間で拡散させ、反応効果を飛躍的に高めている。駆虫効果も高く、実用化に有望な方法である。光触媒では、可視光線でも有効な触媒が開発されつつあり、本発明を応用した方法は、海中での大量の養殖にも応用できる。また貨物船のバラスト水中の原虫などの効率的な駆除法が環境保護のために求められている。バラスト水処理対策にも利用できる可能性があり、利用できると市場は大きい。

用語解説

光触媒
光を照射することにより触媒作用を示す物質の総称であり、酸化チタンが代表である。

養殖
魚や貝、海藻などを人工的に飼養すること。海水養殖ではハマチなどで、淡水飼養でのはイチイなどがある。

活性酸素
酸素が化学的に活性になったもので、非常に不安定で強い酸化力を持つ。フリーラジカル、過酸化水素等。

バラスト水
船舶の船底に積む重しとして用いられる水。無機質で出港するとき、その出港地で港の海水などを積み込む。
특허 정보

- 권리소유자: 출원 중
- 실시 방법: 실시 중
- 기술분야: 소비자 제품
- 노무하우스 제공: 노무하우스
- 라이센스 사용여부: 라이센스 사용 가능

出願번호: 오타 번호
出願일: 오타 날짜
공개번호: 오타 번호
공개일: 오타 날짜

- 특허번호: 출원 중
- 출원일: 출원 날짜

- 참조: 참조 설명

参考情報

- 特許流通アドバイザーによる推奨
- 関連特許: なし
- アダプト: 애드포트
- 参照可能な特許流通支援チャート
 : 16年度 化学25 光触媒（材料技術及び担当技術）

皆様からのお問合せを、お待ちしています。

- この特許の問合せ先

財団法人北九州産業学術推進機構
産学連携センター 知的財産部
知的財産部長
小田 泰雄
〒 803-0803
福岡県北九州市若松区びわの美

もしくはお近くの特許流通アドバイザー
(☑ ☑ ☑ をご覧下さい)にご連絡下さい。

皆様로서のお問合せを、お待ちしています。

- この特許案の問合せ先

財団法人北九州産業学術推進機構
産学連携センター 知的財産部
知的財産部長
小田 泰雄
〒 803-0803
福岡県北九州市若松区びわの美

もしくはお近くの特許流通アドバイザー
(☑ ☑ ☑ をご覧下さい)にご連絡下さい。

皆様로서のお問合せを、お待ちしています。

- この特許案の問合せ先

財団法人北九州産業学術推進機構
産学連携センター 知的財産部
知的財産部長
小田 泰雄
〒 803-0803
福岡県北九州市若松区びわの美

もしくはお近くの特許流通アドバイザー
(☑ ☑ ☑ をご覧下さい)にご連絡下さい。

皆様로서のお問合せを、お待ちしています。

- この特許案の問合せ先

財団法人北九州産業学術推進機構
産学連携センター 知的財産部
知的財産部長
小田 泰雄
〒 803-0803
福岡県北九州市若松区びわの美

もしくはお近くの特許流通アドバイザー
(☑ ☑ ☑ をご覧下さい)にご連絡下さい。

皆様로서のお問合せを、お待ちしています。

- この特許案の問合せ先

財団法人北九州産業学術推進機構
産学連携センター 知的財産部
知的財産部長
小田 泰雄
〒 803-0803
福岡県北九州市若松区びわの美

もしくはお近くの特許流通アドバイザー
(☑ ☑ ☑ をご覧下さい)にご連絡下さい。

皆様로서のお問合せを、お待ちしています。

- この特許案の問合せ先

財団法人北九州産業学術推進機構
産学連携センター 知的財産部
知的財産部長
小田 泰雄
〒 803-0803
福岡県北九州市若松区びわの美

もしくはお近くの特許流通アドバイザー
(☑ ☑ ☑ をご覧下さい)にご連络下さい。

皆様로서のお問合せを、お待ちしています。

- この特許案の問合せ先

財団法人北九州産業学術推進機構
産学連携センター 知的財産部
知的財産部長
小田 泰雄
〒 803-0803
福岡県北九州市若松区びわの美

もしくはお近くの特許流通アドバイザー
(☑ ☑ ☑ をご覧下さい)にご連絡下さい。

皆様로서のお問合せを、お待ちしています。

- この特許案の問合せ先
鉄の刃側面から薬剤等を吐出し、切断面に塗布する

特許権者：西浦 志比兵衛

不要な雑草や雑草を選択的に枯らせるために、それら草木の幹や枝を鉄等で切断し、その切断面に枯殺剤を塗ることや、果樹・街路樹の樹幹等に入れた害虫、雑草等を駆除または防除するために、防虫剤、殺菌剤を枝等の切断面から浸透させることや、果実・野菜の無種子化、実検化等を促進するために、必要な処理液剤を植物の切り口に塗ることが広く行われている。しかしながら、植物の枝葉の切断面に必要な薬剤を後から塗ることは非常に手間のかかる、面倒な作業である。

本発明による鉄を用いれば、そのような作業をとても簡単に実施できることになる。すなわち、本発明には切刃の側面に薬剤が通る経路および吐出口が設けられており、さらに粘性の大きい薬剤には圧力をかけて吐出を促すポンプも、鉄の持手に連結して作動するようになっている。したがって本発明による鉄で植物の枝葉等を切断すると、同時にその切断面薬剤等を塗布・浸透させることができる。このため、後から薬剤の塗布のみを行う場合と比べ、手間を大幅に削減することが可能し、薬剤等の塗布、浸透も確実な効果を期待することができる。

ユーザーや界

活用アイデア

| 鉄制材組立機 | ①棒状、板状の材を切断すると同時に、切断面に接着剤を塗布し、直ちに複雑な形の鉄制材を組み立てる
| 段ボール切断機 | ①厚手の段ボールを切断すると同時に、切断面に接着剤を塗布し、箱に組み立てる
| ガーゼ切断機 | ①傷バンドに付けるガーゼを、切断すると同時に消毒剤を塗布する

剪定鉄による樹木の手入れは、広く一般家庭でも行われており、剪定と同時に防虫、殺菌作用が期待できれば非常に便利になる。さらに樹木の育成や、果樹等の栽培業を業務としている場合には、防虫剤、殺菌剤をはじめ、必要な処理液剤を塗布・浸透させることが非常に手間・経費のかかる作業になっている。

本発明による鉄を使えば、その作業の能率が大幅に良くなり、経費が節減できることと同時に、通常の薬剤散布のように不要な散逸も防ぐことになるので、作業者が他の動植物への薬害を最小限抑えられることもできる。したがって本発明の効果は非常に大きいと考えられる。さらに本発明の本質である、断圧と同時に切断面を処理できることを利用すれば、紙やプラスチック板を切断すると同時に切断面に接着剤を塗布し、直ちに箱に組み立てる、というような作業に応用できるものと考えられる。

用語解説

枯殺剤　塩素酸ソーダを中心とする植物を枯らせる薬剤一般を指し、除草剤や枯葉剤を含む

剪定鉄　木の形を整えたり手入れをするために枝等を切断する鉄

実検化　実検（ねんじつ＝植物に実がなること）を促すこと
特許情報

- 権利存続期間：〇〇年 平 〇〇〇〇
- 実施段階：試作段階
- 技術導入時の技術指導の有無：応相談
- ノウハウ提供：応相談
- ライセンス制約条件：許諾のみ

参考情報

- 特許流通アドバイザーによる推薦
- 関連特許：あり
- 特許番号：特許 〇〇〇〇〇〇
- 登録日：平 〇〇〇〇〇

皆様からのお問合せをお待ちしています。

- この特許の問合せ先

西浦 志比兵衛
〒 〇〇〇〇〇〇
福井県勝山市荒土町堀名中清水 〇〇〇〇〇〇

もしはお近くの特許流通アドバイザー(〇〇　)
にご連絡下さい。
屋根を太陽の直射日光から保護し、自然通風冷却により
屋根が高温になるのを防止する屋根の構造

特 許 権 者：株式会社サワ

金属製の建物の屋根は太陽の直射日光に晒されると
高温となり、建物の物部材と温度に悪影響を及ぼす。こ
れを防止するため、従来は、屋根裏の空間を換気した
り、屋根自体を断熱構造にしたりして屋根の温度上昇
を防止していたが、これは高額の経費を要したり、
工場、倉庫、車庫等の場合には、構造上これらの方法
を採用できず、直射日光で相当な高温となって屋内に
影響する場合があった。

本発明は、金属製折板屋根の上部に多数の通風孔を
設けたシートを張った屋根構造とするものであり、最
上部のシートによって直射日光を遮ると共に、金属製
折板屋根の凹部とシートによって形成される通風路内
を風（空気）が吹き抜けることにより、屋根材料を冷
却し、一部は屋根の高熱になることを防止するものである。
この方法によれば、金属製折板屋根上部への設置物は
多数の通風孔を設けたシートのみであり、敷設後は従
来のような換気装置の運転・維持経費を断熱構造材等
の費用を要することなく、通風孔を設けたシートによ
り直射日光を遮り、通風路内を吹き抜ける風（空気）
によって部材を自然冷却し、シートに多数の通風孔を
設けたことにより、風によるシートのバタツキを防止
でき、平屋根、傾斜屋根等、種々の形状の屋根に適用
できる特徴がある。

ユーザーアイデア

銅製建物の冷房
（1）太陽の直射日光を通じた風の吹き抜
けを利用した建物内の冷房設備屋根の
保護

家畜舎の冷房
（1）家畜舎の上部に敷設して家畜舎内の
冷房化、家畜の保護、冷房経費縮
減

本発明は、金属製折板屋根と多数の通風孔を設
けたシートから成り、直射日光を通じた風（空気）の吹き抜けにより自然冷却効果を奏する
冷房設備屋根に敷設して、屋根の過熱を防止する
ためであるが、本発明の思想は、例えば、牛・豚
等の家畜舎の屋上および屋内上部に敷設して、真
夏日・猛暑日の家畜舎内の気温を下げることがにより
冷房装置・扇風機等の運転経費を節減できる。市
場規模については公表された有効な統計がなく詳
細は不明であるが、前記の適用対象例の数は膨大
であり、本格的に普及されれば、1棟の敷設材
料費は100〜200万円と仮定しても、その市場規
模は10〜20億円/年程度と推定される。

凹凸状の条材
建築・土木等に使用する、鋼板を山谷状に冷間成形した
デッキプレート（※）
特許情報

・権利存続期間：4年 平成13年
・実施段階：実施有り
・技術導入時の技術指導の有無：有り
・ノウハウ提供：有り
・ライセンス制約条件：許諾のみ

出願番号：特願2000-000000
出願日：平成15年

公開番号：特開2000-000000
公開日：平成15年

特許番号：特許2000-000000
登録日：平成15年

参考情報

・特許流通アドバイザーによる推薦
・関連特許：あり
・↑↓：↑↓↑↓

皆様からのお問合せを、お待ちしています。

この特許の問合せ先

株式会社サワヤ
冷蔵ループ事業部
チームリーダー
関本 昌幸
〒〒〒〒〒〒
石川県金沢市駅西本町 - - - -
000-0000

もしもお近くの特許流通アドバイザー (↑↑↑をご覧下さい)にご連絡下さい。

特許流通データベース情報

・タイトル：屋根
・ライセンス番号：□□□□□□□□□□□□□□□□□□
（↑↑↑をご覧下さい）からご覧になれます。
プレートに固定される複数本のパイプの交差角を可変にする金具により、パイプ結合構造を簡素化する

特 許 権 者：石川 久夫

本発明は、ビニールハウスやプレハブなどの簡易ハウスをパイプにより骨組みする場合の3本以上のパイプの交差する金具部分に用いられ、パイプ結合を簡素化するものである。

本発明による金具は、1本の主パイプと主パイプの軸線に直交する平面をなしプレートと、プレート上に、主パイプがプレート貫通可能に固定するための主クランパを有する。さらに、プレート上に複数の従パイプをそれぞれの軸方向を主パイプの軸線と直交する平面に配置するように固定するための複数の従クランパを備える。従クランパの固定位置は、使用目的により、固定位置を変えることができる。好ましい形状として、複数の従パイプ内の2本は軸方向が、主パイプの軸線を中心として放射状に配置され、所定の角度範囲内で位置変更を可能にする。さらに、いずれのクランパもプレートへの取り付け部であるベースには、プレートとクランパを固定するための固定ボルトと、ベースから突設された位置決めピンを有する。プレートには、固定ボルトと位置決めピンがそれぞれ挿入可能な挿入穴を備え、従クランパ用の挿入穴にあっては、従パイプそれぞれの軸線を可変すべく複数位置に設けられている。これにより、自由度の高いパイプの結合を、簡単な作業で可能とし、しかも、外観品質も従来方法に比べ向上できる。
特許情報

- 権利存続期間： 年 月 年
- 実施段階：実施あり
- 技術導入時の技術指導の有無：応相談
- ノウハウ提供：応相談
- ライセンス制約条件：許諾のみ

参考情報

- 特許流通アドバイザーによる推奨
- 関連特許：あり

参照可能な特許流通支援チャート

<table>
<thead>
<tr>
<th>年度</th>
<th>一般</th>
<th>カーテンウォール</th>
<th>住宅用免震技術</th>
</tr>
</thead>
<tbody>
<tr>
<td>13年度</td>
<td>一般1</td>
<td>17年度</td>
<td>一般22</td>
</tr>
</tbody>
</table>

皆様からのお問合せを、お待ちしています。

この特許の問合せ先

石川 久夫
〒020-0082
岩手県奥州市南都田字小十文字 ☎ - ☎
問合せ先は、上記のご案内です。

もしもお近くの特許流通アドバイザー（をご覧下さい）にご連絡下さい。

特許流通データベース情報

- タイトル：簡易ハウスの骨組み用連結金具
- ライセンス番号： colspan=3

からご覧になれます。
舗装路面の補修、クラックの補修、雑草生育防止方法および装置

出願人：有限会社ピーエスケイ

本発明は、道路の舗装面に発生した溝やクラックを安全に速やかに補修する方法および装置に関する発明である。

本発明によれば、作業者の労力軽減が可能で、溝や雑草が生育することを防止することができる。上記目的を達成するために、高圧水により舗装にできた溝およびクラックを洗浄する工程、舗装面の溝およびクラックに補填物を充填する工程、補填物を圧接する工程および表面処理を行う工程により実施されるものである。舗装路面上にできた損傷は、例えば小さな規模であっても、車両や歩行者の通行に安全面で問題があり、早急に補修が必要である。

本発明は、雑草が路面の溝やクラック部分で生育できないように、まず生えている雑草を除去し、その後、固化剤を混合した砂を塗り、水を散布して固化することにより、除草および路面上を修理する方法および装置を提供するものである。本発明の方法では、洗浄工程で高圧水を用いることから微細なクラックの洗浄も可能となり、前後に力を徹底的に除去できるので、その後の工程での補材の剝落が防止できる。補材として、けい砂等の骨材およびセメントからなるモルタルと、接着材、膨張材が含まれている。モルタルの骨材としては、けい砂、バーライト、焼却灰等が使用できる。補材は中性化処理の後より補材を塗り、舗装路面上の損傷を増幅する工程、その後、表面仕上げ用プラシにより表面を仕上げる事ができる。

ユーザー業界

活用アイデア

タイルの目地の修理機器

ガラス窓のパテの修理機器

レンガ床、レンガ積み壁等の目地詰め用簡単機器

本発明の方法および装置により、舗装道路の補修工事を迅速に実施することが可能となる。これにより、道路工事に伴う交通渋滞の緩和に貢献することから、高速道路をはじめ、各種の道路への活用が期待される。

本発明の考え方は構成要素は、色々な用途に応用が可能で、例えば、タイル貼りの箇所の目地の汚れ・剝落等がある場合に、その部分の清掃を高圧水の噴射で行い、目地材を注入し、その後表面加圧・成形を行う設備を開発することにより、容易に補修が可能となる。また、金属建具等の窓ガラスを固定するパテの汚れ・剝落した箇所に対して、高圧水による清掃、その後のパテ詰め、表面加圧、成型等の一連の作業を行う機械を開発することで、再生が可能となる。また、レンガ積み壁、レンガ床等の目地詰めに際して、目地部分の清掃、パテ詰め、成形等も活用ができ、その用途は極めて広い。

用語解説

舗装面の耐久性を増すために、表面に石、レンガ、プラスチック、コンクリートなどで固定した構造をいう。

クラック

舗装面のひび割れのこと。本発明では、舗装路面上にできたひび割れや割れを指す。

骨材

モルタルまたはコンクリートを作る際に、セメント、水と混合する砂、砕石等をいう。

モルタル

プラスチック舗装用のモルタルは、2mm以下程度の砂とプラスチックを練ったもの。

目地

建築部門において、間接する建築材で部材間の境界部分、また、そこに充填される材料をいう。

パテ

舗装材を塗って舗装面を埋めたり、雨水の侵入を防いだりするために使用するペースト状の材料。

原稿作成：青山進
有限会社青山技術士事務所
図1 鋳装路補修用装置の説明

図2 鋳装路補修施工前、施工後の写真

特許情報

・権利存続期間：出願中
・実施段階：実施有り
・技術導入時の技術指導の有無：有り
・ノウハウ提供：有り
・ライセンス制約条件：許諾のみ

参考情報

・特許流通アドバイザーによる推薦
・関連特許：なし
・出願：なし

皆様からのお問合せを、お待ちしています。

この特許の問合せ先

有限会社ビーエスケイ
代表取締役 福田 啓二
〒 860-0044
栃木県宇都宮市宝木町 7-1
電話: 0280-87-8787
FAX: 0280-87-8788

もし近くのお近くの特許流通アドバイザー
(①②③をご覧下さい)にご連絡下さい。
廃プラスチックを接触分解方法・装置で石油資源とする技術

出願人：財団法人北九州産業学術推進機構

ポリエチレン（PE）、ポリプロピレン（PP）、ポリスチレン（PS）、などと若干のポリエチレンテレフタレート（PET）、ポリ塩化ビニール（PVC）等が混じっている廃プラスチックを、予め200～400℃に加熱された反応器内の触媒中に投入し接触分解する。分解し難い難溶分子のポリエチレンであっても低温で分解されるため、ワックス分がほとんど生成せず、低流動点の油分を得ることができる。また炭化され難いため分解残留がほとんど生じない。PE等の樹脂が数％程度混入しても、独立した脱塩素工程を利用せず、生成する塩化水素は触媒に混合したCa化合物と反応して塩化カルシウムが生成されるため生成油中の残留塩素は0.00001程度まで除去される。また、塩化水素による装置の腐食も防止できる。Ca化合物の混合量は触媒に対し0.1～0.5％が好適である。また、PE等触媒およびCa化合物に加え鉄化合物を配合することにより脱塩素率を格段に向上させ、さらに極めて低い塩素濃度の油分を得ることができる。また、反応器内に不活性ガスが導入された雰囲気で、分解・ガス化が行われるため、ダイオキシンの発生を防止することができ、環境保全性にも優れる。

<table>
<thead>
<tr>
<th>ユーザー業界</th>
<th>活用アイデア</th>
</tr>
</thead>
<tbody>
<tr>
<td>生活・文化</td>
<td>一般プラスチック廃棄物の塩化</td>
</tr>
<tr>
<td>有機材料</td>
<td>いわゆるPPや高密度など一般</td>
</tr>
<tr>
<td>塩化カルシウムの有効活用</td>
<td>廃棄物に含まれるプラスチックの</td>
</tr>
<tr>
<td></td>
<td>油化</td>
</tr>
<tr>
<td>製造</td>
<td>無機材料</td>
</tr>
</tbody>
</table>

現在、我国では年間約1000万トンのプラスチックが、産業廃棄物あるいは一般廃棄物として廃棄されている。これら廃プラスチックの約0.1％が有効に利用されるが、その殆どは発電用燃料としてあるいはその他の熱源として利用されており、ケミカル・テクノロジーリサイクルはまだ進んでいない。そこで廃プラスチックを分解し、燃料油等の石油資源とする技術の開発が強く望まれていた。

本発明では従来の熱分解としては達った接触分解によりPE、PP、PSといった単一プラスチックの廃棄物だけでなく、それらがテクノロジー構成物として組み合わされる鋼のような都市ごみ型の混合廃プラスチックでも分解反応が効率が高い。また、若干のPE等の紙が混在し、生成油中の残留塩素や分解残留が少なくため運転も容易である。またプロセスが簡素で大型化が可能なためコストでの少量分散型製油プラントとして好適であり、新たなニーズが期待できる。
特許情報

・権利存続期間：出願中
・実施段階：試作段階
・技術導入時の技術指導の有無：応相談
・ノウハウ提供：応相談
・ライセンス制約条件：許諾のみ

皆様からのお問合せを、お待ちしています。

・出願番号：
・出願日：平成〇〇年〇月〇日

・公開番号：
・公開日：平成〇〇年〇月〇日

・特許番号：出願中
・登録日：出願中

この特許の問合せ先:
財団法人北九州産業学術推進機構
産学連携センター 知的財産部
知的財産部長 小田 泰雄
〒〇〇〇〇〇
福岡県北九州市若松区ひびきの〇-〇
○〇〇〇　

もしくはお近くの特許流通アドバイザー(以下をご覧下さい)にご連絡下さい。

参考情報

・特許流通アドバイザーによる推薦
・関連特許：なし
・対象：はい なし
多種多様な長さの傘を簡単に整理して、安定した状態で収納できる傘立て

特許権者：井澤 弘子

本発明は、自動車の車内に傘を収納するために用いられる車載用傘立てに関するものである。

傘立てについて、車載用に限らず、従来より様々な形状・構造のものが開発され、市場に提供されている。

しかし、多様化した消費者のニーズや、様々な年齢層の消費者の身体条件に合った傘を提供するため、多種多様な仕様の傘が流通しており、現在提供されている傘立ての中で、仕様の異なる様々な傘の収納に対応できるものは非常に少ない。また、これらの傘立てを車載用として使用する場合、車の運転中に生じる振動・衝撃に対する安定性や、傘立てに貯まっている水が飛散するという課題があった。そこで、これらの課題を解決するため、本発明では、傘収納台に、傘を支持するための環状ストッパーを有し、無段階で伸縮できる軸を取り付けた。これにより、様々な仕様の傘を収納することが可能となる。また、傘収納台の底部には、ゴム製の滑り止めが付けられており、運転中に車に伝わる振動・衝撃に対する安定性を担保している。

さらに傘を差し込むためのパイプを傘収納台に取り外し可能として、パイプに貯まった雨水を容易に捨てることができ、傘収納台からの雨水の飛散を防止することができる。

用語解説

石膏
硫酸カルシウムと水からなる無機物。無色透明ないし白色の結晶

カテキン
植物色素の一種。多くの植物中に存在し、酵素または酸と反応してタンニン様の物質を生成する

フラボノイド
植物に広く含まれる低分子の有機化合物。柑橘（かんきつ）類の皮などから抽出され、血圧低下作用をもつ
特許情報

・権利存続期間： 年 ヶ月 平 月日
・実施段階： 試作段階
・技術導入時の技術指導の有無： 応相談
・ノウハウ提供： 応相談
・ライセンス制約条件： 許諾のみ

参考情報

・特許流通アドバイザーによる推薦
・関連特許： あり
・対象： 一般 資料

皆様からのお問合せを、お待ちしています。

・この特許の問合せ先

井澤 弘子
〒 郵便番号
岐阜県多治見市滝呂町 郵便

もしくはお近くの特許流通アドバイザー
(某をご覧下さい) にご連絡下さい。
受け皿等を使用する必要が無く、内容物が無くなった
後において植物栽培用器として使用することができる

出　願　人：伊東　美惠子

本明発は、従来において、植物栽培用器とは分離した形で使用されていた受け皿等の必要性をなくし、汚れた受け皿による美観の喪失や、持ち運びに際しての不便性を解消した植物栽培用器である。本発明は、受け皿の使用の必要性をなくして、そのまま鉢カバーを装着、または鉢カバー内に設置することができる。また、植物の育成に際して必要な水の管理を簡易、且つ効率的に行うことができ、さらに流通において内容物（土等）が漏れ出る危険性をなくすことができる植物栽培用器である。本発明は、必要に応じて余分な水分等を排出することのできる排水孔を備えた植物栽培用器であり、すなわち、植物栽培材料を収容可能な空間部を備えた栽培用器本体を用いて形成され、この栽培用器本体は、前記空間部内に注がれた液体を排出する排出用開口を少なくとも一つ以上備えており、当該排出用開口は閉塞部材によって液密（液体が漏れ出ないように密着した状態）に閉塞され、当該閉塞部材は、前記排出用開口を任意に開放または、閉塞するものとして、栽培用器本体の外側から操作可能に設けられている、植物栽培用器である。

ユーザーや活用途アイデア

<table>
<thead>
<tr>
<th>ユーザー業界</th>
<th>活用アイデア</th>
</tr>
</thead>
<tbody>
<tr>
<td>植物の置付け</td>
<td>①栽培用器本体を分離した構造利用</td>
</tr>
<tr>
<td>②栽培用器本体の空間部活用</td>
<td></td>
</tr>
<tr>
<td>③栽培用器本体の空間部活用</td>
<td></td>
</tr>
<tr>
<td>④栽培用器本体の空間部活用</td>
<td></td>
</tr>
<tr>
<td>広告宣伝用器</td>
<td>①業界ロゴをプリントし貼り付ける</td>
</tr>
<tr>
<td>②小物・文房具などを収納する</td>
<td></td>
</tr>
<tr>
<td>花瓶</td>
<td>①液密構造により花瓶にも使用可能</td>
</tr>
<tr>
<td>②フレームに写真やイラストを飾る</td>
<td></td>
</tr>
</tbody>
</table>

本発明は、植物栽培用器のみならず、多目的に活用が可能である。栽培用器は、別体、付属させることができるのと、販売促進用の用途として、用器の表面には、適当、宣伝や、広告、あるいは企業名称やマークを付けて、有効に活用できる。本来は、植物鑑賞用に飾られることから、当然に鑑賞する者の注目を浴び、用器に付された宣伝なども充分に認識されるので、宣伝広告機能も、自ずと高められる。また、飲食物、調味料、洗剤、化粧品およびその他の日用品から選択される収容物を収容または包装するための用器として使用可能であり、従来では、単に廃棄されるに過ぎなかったものが、再利用できることから資源保護に寄与できる。また、排出用開口は閉塞部材によって密着した状態で閉塞されるので液体が漏れ出ず、花瓶にも使用できる。さらには、水の受け皿を不要としているので、装飾性を高めることができ、文房具や雑貨その他小物入れにも使用することが可能である。
特許情報

・権利存続期間：出願中
・実施段階：実施有り
・技術導入時の技術指導の有無：応相談
・ノウハウ提供：応相談
・ライセンス制約条件：譲渡または許諾

出願番号：出願日
公開番号：公開日
特許番号：出願中 登録日

参考情報

・特許流通アドバイザーによる推薦
・関連特許：あり

皆様からのお問合せを、お待ちしています。

この特許の問合せ先

有限会社
代表取締役 伊東 美恵子
〒000-0000
千葉県四街道市大日 123-4
電話番号：1111-2222

もしくはお近くの特許流通アドバイザー（遺漏をご覧下さい）にご連絡下さい。
小麦や蕎麦のアレルギーが無い、米リンク%の麺と菓子を製造

出願人：堀田 茂樹 天野 雅民

従来のうどん、ラーメン、そばと同じ食味と食感で食することができる麺類を、0.1%米を原料にして作る方法とその道具を発明したものである。具体的には、普通に製造した粘り（うるちまい）麺（もちのり）粉0.1%、麴米（もちのごめ）粉0.1%を攪拌機に投入、重量比3%のぬるま湯を加えて加温しながら、米粉の温度を30℃に保ち約30分攪拌・熟成する。次に米粉の温度を50℃に保つよう加温して30分攪拌・乾燥し、さらに50℃まで加温してから30分間攪拌・乾燥させる。その後、熱湯を加えて30度の温度を保ちながら攪拌することで、米ぬか粉の固化を促すことで初期の麺生地が生成される。さらにこれを、独自の先端形状を持ち風通し運動を行う繊維棒を有する増粘機で繊補上げ目的とする麺生地が完成する。

なお、高温で米ぬか粉を固化した後、温度を下げていくと米の粘り度を乾燥状態で製造することもでき、長期保存することが可能である。このように米粉0.1%で添加物も他の麺類も一切使わず、小麦グルテン同様の粘りを引き出した麺生地やケーキ類を製造することができた。したがって小麦アレルギーや蕎麦アレルギーに悩む人々へ、従来のうどんや蕎麦あるいはケーキ類と同じ食感の、安心して食べられる食品を提供できる。

ユーザー業界

食品バイオ

活用アイデア

アレルギーフリーな主食品
・パン、ピザ類の主食品を本発明の米粉で作る

アレルギーフリーな菓子類
・スポンジケーキ、カステラ等の菓子類を本発明の米粉で作る

本発明により、日本全国に0.1%万人いると言われる小麦アレルギー、蕎麦アレルギーに悩む人々へ、今までの小麦を原料とした麺類と同じ食味、食感を持ちながら、米を原料とした安心して食べられる麺類を提供できるようになる。また日本では余剰米麻味を、従来は小麦を原料にしていた食品の製造に利用できることとなり、最近の小麦を初めとする世界的な穀類価格の高騰に対して有効な対策になり得る。さらに小麦を原料に使用した各種食料品および菓子類（パン、ピザ、スポンジケーキ、カステラ等）を0.1%米粉から作る道が開けたことになる。穀類として面積あたり収穫は米が一番多いことからも、世界的な食料不足対策としても有効な手段になると考えられる。

用語解説

アレルギー
特定の原因（抗原）に対し、免疫反応が過剰に起こるこ

粘り（うるちまい）
粘り気の多い麴米（築米とも書く）に対し、粘り気の少
ない米を指す

固化
米粉粒子の結晶化（加温、加熱により粒子が崩壊し、粘度
が増大した状態）を指す
特 許 情 報

・権利存続期間：出願中
・実施段階：実施有り
・技術導入時の技術指導の有無：応相談
・ノウハウ提供：応相談
・ライセンス制約条件：許諾のみ

出願番号：特願 寫・写・写
出願日 20XX-XX-XX

公開番号：特開 写・写・写
公開日 20XX-XX-XX

特許番号：出願中
登録日 出願中

参考 情 報

・特許流通アドバイザーによる推薦
・関連特許：なし
・☎：☎☎☎

皆様からのお問合せを、お待ちしています。

この特許の問合せ先 ☎
有限会社レイク・ルイーズ
米粉食品開発研究所事務局
代表取締役 垂田 茂樹
〒 XXXXXXXX
岐阜県海津市南濃町奥条 〒-☎
☎☎قبول
製造工程を簡素化して、地球環境にやさしい、ピーズ状のポリマー製造方法

出願人：青森県、株式会社環境工学

ピーズ状シクロデキストリンポリマーは、水溶性のシクロデキストリンを連結し、不溶性に付与したピーズ形状のポリマーである。本ポリマーの従来の製造方法としては、流動パラフィンなど疎水性状態物質に反応液を滴下し、製造する方法がある。それによりれば、疎水性状態物質を使用し、さらに疎水性状態物質を有害な有機溶媒等で洗浄する作業が必要であり、洗浄液を事後に処分する必要があり、地球環境に負荷をあたえる問題があった。

しかし、本発明による方法では、疎水性状態物質を用いず、ビーズ形状のシクロデキストリンポリマーを製造することができるため、有機溶媒を用いた洗浄工程が不要で、さらに排出される廃液量が少なく済む。つまり、従来法では、製造過程で疎水性状態物質や洗浄用有機溶媒が必要とし、工程数が多く、そのために製造コストがかかるが、本発明の製造方法は、疎水性状態物質や洗浄用有機溶媒が不要であり、そのため工程数が少なく、洗浄に使用した有機溶媒を処理する必要がないため、製造単価を抑えることができる。さらに、有害な有機溶媒を用いないことから、本方法で製造された材料は食品や医薬品製造への活用も期待される。

ユーザーや界

活用アイデア

<table>
<thead>
<tr>
<th>ユーザー業界</th>
<th>活用アイデア</th>
</tr>
</thead>
<tbody>
<tr>
<td>化学・薬品</td>
<td>有機溶媒使用量が少ない環境にやさしい新規製造法</td>
</tr>
<tr>
<td>有機溶媒</td>
<td>新規製造法</td>
</tr>
<tr>
<td>化学・薬品</td>
<td>新規製造法</td>
</tr>
<tr>
<td>化学・薬品</td>
<td>有機溶媒</td>
</tr>
<tr>
<td>食品・バイオ</td>
<td>有機溶媒</td>
</tr>
</tbody>
</table>

シクロデキストリンポリマーの主原料であるシクロデキストリンは、食品や医薬品添加物として使用されている環状オリゴ糖で、環の大きさが違う、、、体が工業材料として流通している。これらシクロデキストリンは、それぞれ環の大きさなどにフィットした低分子有機化合物を分子内部に選択的に取り込む性質（包接性）がある。シクロデキストリンポリマーは、水などに溶解するシクロデキストリン同士を連結し不溶化したもので、シクロデキストリンが本来有する低分子有機化合物の選択的包接が可能である。さらに、エタノール等の有機溶媒で包接した物質を脱離させることも可能である。

これらの性質を有し、さらに製造工程で有機溶媒を用いないで済む水不溶性ビーズ状シクロデキストリンポリマーは、ビスフェノール、ジオキシン類などの選択的除去材や精製試薬の他に、ポリフェノールやアミノ酸などの食品原料を分離・抽出する材料等への応用、実用化が期待できるものである。
特 許 情 報

・権利存続期間：出願中
・実施段階：試作段階
・技術導入時の技術指導の有無：応相談
・ノウハウ提供：応相談
・ライセンス制約条件：許諾のみ

・出願番号：特願 □□□□□□□□□□
・出願日：平 □□□□□□□□□□
・公開番号：特開 □□□□□□□□□□
・公開日：平 □□□□□□□□□□
・共著番号：出願中
・登録日：出願中

参考情報

・特許流通アドバイザーによる推薦
・関連特許：あり
・특허번호：□□□□□□□□□□

皆さんからのお問合せをお待ちしています。

・この特許の問合せ先：

株式会社環境工学
開発部
部長 鈴木 純一

〒 □□□□□□□□
青森県弘前市高田 □□□□□□□□

もしにお近くの特許流通アドバイザー
(□□□□□□□□をご覧下さい)にご連絡下さい。
太陽光でも室内光でも機能を発揮する光触媒

出願人：国立大学法人京都大学

本発明は、特定元素（□ □ □）を必須成分として含むチタニア系触媒を主体として、該当体に無機金属が担持された可視光応答性を有するチタニア系光触媒の製造方法に関するものである。

チタニアの光触媒作用は、チタニアがそのバンドギャップエネルギーの大きいエネルギーステートを持ち、光を吸収すると、荷電子帯の電子が伝導帯に励起され、荷電子帯には正孔が生成して、これらの光触媒表面での内部の物質と酸化・還元反応を起こすことにより発揮される。

本発明は、□ □ □を必須成分として含むチタニア系触媒に、無機金属として□ □ □ □ □□から選ばれる少なくとも1種の無機金属を添加した場合に、可視光に対する光触媒活性が大幅に向上し得る。これらの無機金属の中でも、□ □ □を添加した場合の可視光に対する光触媒活性は極めて高い。

本発明の可視光応答型光触媒は、紫外光領域のみならず可視光領域に対しても優れた応答性を示し、特に、可視光領域に対する応答性が大幅に向上したものであり、移動金属が担持されていないチタニア系触媒に比較すると、可視光に対する光触媒活性が優れているため、太陽光などの紫外光領域のエネルギーレベルを含む環境のみならず、室内蛍光灯など光強度の弱い光の照射でも優れた触媒活性を発揮することができる。

ユーザー業界

活用アイデア

室内脱臭コート

□既存空調・照明への塗布による脱臭・抗菌効果が得られる

抗菌性食器棚

□食器や食器棚への光触媒塗布による抗菌効果が期待できる

空気清浄カーテン

□光触媒付室内カーテンによる室内の脱臭効果

本発明は、特定元素（□ □ □）を必須成分として含むチタニア系触媒を主体として、該当体に無機金属が担持された可視光応答性を有するチタニア系光触媒の製造方法に関するものである。

従来の光触媒において高機能化を目指したニオブ、タンタル、ガリウム、希士類元素などをベースとした様々な複合酸化物などがあるが、これらの元素は高価であり、安全性や安定性についての検討は十分に行われていない。本発明の可視光応答型光触媒は、安価であり、無害で安定した酸化チタニアをベースとしているため幅広い応用にまで使用されることが期待できる。さらに本発明の可視光応答型光触媒は、従来の光触媒が利用される紫外光領域の光を必要とする箇所に限らず、室内の壁面、床面、天井面、さらにはカーテンなどの繊維等にも使用が可能であり、室内環境における臭気物質や汚れ物質の酸化分解、除去効果が期待できる。
室内光で釻いを分解

特許情報

・権利存続期間：出願中
・実施段階：実施無し
・技術導入時の技術指導の有無：応相談
・ノウハウ提供：応相談
・ライセンス制約条件：許諾のみ

出願番号：
出願日：
公開番号：
公開日：
特許番号：出願中
登録日：出願中

参考情報

・関連特許：国内外あり
・用途：

皆様からのお問合せを、お待ちしています。

この特許の問合せ先

国立大学法人京都大学
産学連携センター 知的財産室
福元 隆

〒606-8501
京都府京都市左京区吉田本町
☎075-753-0111
fax075-753-0112

もしくはお近くの特許流通アドバイザー（お手数をおかけしますが）ご連絡下さい。
コスト増加およびサイズ増大のない多原色フルカラーピックを提供する

出願人：国立大学法人弘前大学

従来のフルカラー発光ダイオード（LED）は、赤、緑および青の3色の3枚の単色LEDが内蔵され、各単色LEDに流れる電流を調整して発光強度を調整し混色することにより、種々の色相の発光を得ている。この場合、色の範囲は図1に示す3色により決まった三角形の範囲内である。色の範囲を広げる従来方法としてRGB（0-3）の各々素子による方法、スペクトル分布の異なるLED種類の光源を用いる方法、発光色の異なる複数の光源による方法、多原色光源による方法等があるが、これらはすべてコスト増加と装置サイズ増大の問題がある。

本発明は、赤色LEDと、青色LEDと、電流値の変化により発光波長が変化する波長可変赤色LEDとを備えたフルカラーLEDであって、波長可変赤色LEDには、所定の個数のピク電流値を有するパルス電流を流している。その結果、複数のピク電流値に応じた複数種類の色（例えば図1における0、1、2、3等）の発光をさせることができる。すなわち色の範囲を図1の範囲（00-00-00-00-00-00-00）に広げることが可能となり、コスト増加と装置サイズ増大することなく色の範囲を広げたフルカラーLEDを実現できる。また青色LED、赤色LEDに波長可変LEDを採用することによりさらに色の範囲を拡大できる。

フルカラーLEDの代表的応用分野である、ディスプレイ分野では人間が知覚する色範囲を忠実に再現するフルカラー表示性能向上ニーズが高まっており、従来の3色LEDによるフルカラーの色範囲では不十分である。そのため色（0-3）のLED素子による技術等、色々な方法が考案されているが全てコスト増加と装置サイズ増大の問題があり普及を阻害している。

本発明は緑色LED、青色LED、赤色LEDのうちの1あるいは2である、あるいは全てを波長可変LEDとし、コスト増加と装置サイズ增大なしで等価的に多原色フルカラーLEDを実現するもので実用上の効果大である。波長可変の緑色LED、青色LED、赤色LED素子の1パッケージ化、パルス電流を含むパッケージは小型化のため装置のパッケージ化を図り、量産化を実現することにより、本発明適用ビジネスの拡大が期待できる。
特 許 情 報

・権利存続期間：出願中
・実施段階：実施無し
・技術導入時の技術指導の有無：応相談
・ノウハウ提供：応相談
・ライセンス制約条件：許諾のみ

出願番号：特願 1001001010
出願日：平成10年1月1日

公開番号：特開 1001001010
公開日：平成10年1月1日

特許番号：出願中
登録日：出願中

特許流通データベース情報

・タイトル：フルカラー発光ダイオード
・ライセンス番号： ***********

参考 情 報

・特許流通アドバイザーによる推薦
・関連特許：あり
・問い合わせ先：

皆様からのお問合せを、お待ちしています。

・この特許の問合せ先：
国立大学法人弘前大学
知的財産創出本部
産学官連携コーディネーター
小杉 基樹
〒 010-8686
青森県弘前市文京町

もしはお近くの特許流通アドバイザー（ ***********をご覧下さい）にご連絡下さい。
支軸受支持基台に弾性フレームをつけ支柱と天幕を係合させた回転アーム支軸装置式簡易テント

出願人：佐久間一郎

従来、弾性フレームを用いたり、また、テント布とフレームが組み立てで組み立てがなれたなど、テントの形状が変化していることがある。例えば、特許公開平10-23688では、テント布とフレームが一体化しているが重量がある設備・保管が組み立てが簡単でない。さらに支点の数本の支軸で支えているため、開口が広く風圧に弱いという問題点があった。

本発明は多数の部品を組み立てない構造で従来の問題点を改善したものである。その構造は、支軸受支持基台に回転アーム支軸通通と弾性フレーム支柱を設けた構成部品が、上部天幕、下部天幕に囲まれている。上部支柱が、下部支柱袋のボルト支柱を支える構成部品からなり、これら構成部品がジョイントで装着する。これを使用する時はテント本体体部を空で支えながら吊り支持具の面を床にして、腰などを利用して腰に掛けるように押し上げると構成部品が反転するように面に固定状態に開き、フレームの役割の支柱と天幕は回転状態で囲むようにテントを形成する。また、風を避けてテントを設ける基台が体体部を空で支えやすいようにすると風圧でテントを形成できる。本明のテントの特長は支柱と天幕が一体化し丈夫で軽いため、簡易に一人で組み立てが可能で、強風に左右されずに組み立てができ、安全に力を要しないで組み立てができる簡易テントである。

ユーザーや活用アイデア

ユーザー業界：住・飲食

活用アイテム

- 各種テント製造販売
- レジャー用、災害対応用等、回転アーム支軸装置式簡易テントを製造・販売する
- テントのレンタルサービス
- 民間、個人向けにアウトドア用テントとして、また、個人、家庭用防災用テントとして貸し出す
- 保管倉庫、レンタル倉庫
- 衣類、食品、家庭用品等の保管、保管倉庫としてのレンタル

本発明のテントは安全に力が必要しないで簡単に一人で組み立てられ、また風圧を利用しても組み立てられる事から、次のような活用が考えられる。ただし、本発明ではテント内用シートがないため、活用目的においては防風床シートの追加、防虫用の作業が必要である。（1）地震被災地で防災テントとして、仮設住宅ができるまでの緊急処置として、被災者の避難場所、食品・医薬品等救助物資保管場所として利用できる。また、山岳難地でも同様である。（2）山登り、キャンプなどのアウトドア用として、人間の寝泊り、携帯物保管場所として利用できる。東京に浮いてる湖上にわざわざ泊まりをすることで防寒、防風対策として利用できる。（3）冬場に凍っている湖上でわざわざ釣りをする時に防寒、防風対策として利用できる。（4）エジプトなどの自動車を使った砂漠旅行が行われているが、夜は野外にテントを張って寝泊まりができる。防砂対策、防虫（サソリ）対策としても利用できる。（5）農業で、もやし栽培などへの利用が考えられる。
特 許 情 報

・権利存続期間：出願中
・実施段階：試作段階
・技術導入時の技術指導の有無：応相談
・ノウハウ提供：応相談
・ライセンス制約条件：譲渡または許諾

出願番号：特願 ********
出願日：平 ********

公開番号：特開 ********
公開日：平 ********

特許番号：出願中
登録日：出願中

参考 情 報

・特許流通アドバイザーによる推薦
・関連特許：なし
・発明： ********

皆様からのお問合せを、お待ちしています。

この特許の問合せ先
佐久間 一郎
〒 ********
福島県二本松市大平山 ********

もしもお近くの特許流通アドバイザー
(**********をご覧下さい)にご連絡下さい。
真空蒸着法で固体の表面にトリアジンジチオール誘導体の高分子薄膜を生成する

特 許 権 者：地方独立行政法人岩手県工業技術センター

本発明は、トリアジンジチオール誘導体の薄膜の生成方法を示すもので、固体内に真空蒸着法による蒸着を用いる。これにより、高分子薄膜の生成が可能となる。

表：ユーザー業界と活用アイデア

<table>
<thead>
<tr>
<th>ユーザー業界</th>
<th>活用アイデア</th>
</tr>
</thead>
<tbody>
<tr>
<td>材料混練ロールの表面改質</td>
<td></td>
</tr>
<tr>
<td>樹脂モールド金型の表面処理</td>
<td></td>
</tr>
<tr>
<td>低自由エネルギー表面への変化</td>
<td></td>
</tr>
</tbody>
</table>

本発明は、トリアジンジチオール誘導体の薄膜の生成方法を示すもので、固体内に真空蒸着法による蒸着を用いる。これにより、高分子薄膜の生成が可能となる。

用語解説

<table>
<thead>
<tr>
<th>用語</th>
<th>解説</th>
</tr>
</thead>
<tbody>
<tr>
<td>有機被膜処理</td>
<td>本発明における有機物（トリアジンジチオール等）からの材料によって被膜を形成すること</td>
</tr>
<tr>
<td>混練ロール</td>
<td>有機材、無機フィラー、離型剤、着色剤等を混合する材料を均一に混練するためのロール</td>
</tr>
<tr>
<td>素材接着性</td>
<td>モールド部品には水分進入・ガス進入を防ぐためにある。こうした素材の進まない密接接着性を示すこと</td>
</tr>
</tbody>
</table>

原稿作成：後藤 和夫 株式会社ベンチャーラボ
特許情報

- 権利存続期間：
- 実施段階：実施無し
- 技術導入時の技術指導の有無：応相談
- ノウハウ提供＝応相談
- ライセンス制約条件：許諾のみ

出願番号：特願
出願日
公開番号：特開
公開日
特許番号：特許
登録日

参考情報

- 特許流通アドバイザーによる推薦
- 関連特許：あり
- その他：

皆様からのお問合せを、お待ちしています。

この特許の問合せ先:

地方独立行政法人岩手県工業技術センター
企画デザイン部
主査 伊五澤 敬
〒 020-8502
岩手県盛岡市飯岡新田 〒- 〒- 〒

もし近くの特許流通アドバイザー
(〒をご覧下さい)にご連絡下さい。
鮮明な色合いの焼きリンゴの製造法で、果芯を除去して
味付後、特殊オープンで焼き上げ、冷凍、真空包装する

出願人：鹿糖 久助、鹿糖 研児、大崎 幸恵

リンゴを高温で加熱すると、乾燥して緑色に、さらに褐色に変化する欠点があった。しかし、さらに焼き上げを続け、一定温度（一定積算温度）に達すると、元の美しい赤色に戻ることが確認できたので、発色の最高時を焼き上げを停止するように調整したコンベアオーブンの使用で美しい赤色の焼きりんごを実現し、連続生産化することで大量生産も可能とした。

本発明による具体的な製造方法は、果実の上部分を水平に切り分け、果柄のつま根部分を果実に残し、且つ果柄の周面を開孔する。果芯部分を除去し、その周面の果肉を削り取って開孔し、この果実を薄い塩水に浸漬する。芯抜きした開孔に砂糖とチーズモンバスターを混ぜたものを注入し、この開孔上に切り取っていただいた上部分を蓋として載せて形状を整え、このリンゴをアルミホイールを敷いた天板に並べ、ジェット噴射高速コンベアオーブンでおそれらで7分〜10秒ほど焼き上げる。でき上がった焼きリンゴの余熱を完全に除去した後、100℃以下の冷凍庫内で冷結し、この製品を1個宛で薄いプラスチック袋に収容し、脱気または真空包装して製品化し、箱に詰めた後、冷凍庫（-20℃以下）に入れて保管する。焼き上がった果実の孔の中に、千果物等を詰めてさらにおいしいものにしても良い。

本発明によれば、鮮明な赤色の焼きリンゴを連続して大量に作り上げることができ、自然色のままの焼きリンゴを長期間冷凍保存しておくことができる。

近年、食料品・嗜好商品の多様化、高付加価値化が進んでおり、本発明の製造方法による鮮明な赤色の焼きリンゴおよびその加工製品に対する需要は非常に開拓できるものと推定される。また、最近の宅配サービスの発達・普及とインターネット商取引の浸透により高付加価値の冷凍食品の販路拡大が容易になっている。従って、鮮明な赤色の冷凍焼きリンゴおよびその加工製品の新製品として、広告、キャンペーンなどにより、顧客の関心を呼び、ヒットする機会が得られるため、従来にない大きな市場を開拓できる可能性を有している。果実小売業の全体市場は約1000億円（経済産業省、平成 30年）であり、その約1/3を関連市場と仮定すると、約3億円の市場が想定される。果実卸売業の全体市場は約1000兆円（経済産業省、平成 30年）で、同様に約1000億円（経済産業省、平成 30年）と一桁大きく、商取引の形態によってはさらに大規模な市場を形成できる可能性がある。
特許情報

・権利存続期間：出願中
・実施段階：実施有り
・技術導入時の技術指導の有無：応相談
・ノウハウ提供：応相談
・ライセンス制約条件：許諾のみ

参考情報

・特許流通アドバイザーによる推薦
・関連特許：あり
 • calar: 갚 pyplot
・参照可能な特許流通支援チャート
 : 16年度 一般15 食品乾燥加工技術

皆様からのお問合せを、お待ちしています。

この特許の問合せ先
鹿糠 久助
〒 〒〒〒〒
岩手県二戸市金田一字大沼 - 〒
① ① ① ① ① ① ① ①
② ② ② ② ② ② ② ②

もしくはお近くの特許流通アドバイザー
(①②③をご覧下さい)にご連絡下さい。
開放特許活用に
あたっての支援施策

ここでは、開放特許の活用に際して、利用可能な各種の支援施策の一部を紹介します。なお、これらの支援施策が必ずご利用頂けるわけではありませんので、ご注意下さい。ご利用に際しては、問合せ先にご確認をお願い致します。

- 融資・保証・リース
- 補助金等／税制
- 法律等に基づく支援
- 専門家による相談・アドバイス

（なお — については、中小企業庁発行の平成 xx年度版「中小企業施策利用ガイドブック」を参照していただいております）

中小企業庁ホームページのご紹介

中小企業に関する最新のニュース、金融・税制、ベンチャー支援などの各種施策情報や「中小企業白書」などの各種調査報告書の紹介、イベントカレンダーや電子相談窓口などを掲載しています。

ホームアドレス 郵便番号 〒 住所 電話番号

産学官連携支援データベースのご紹介(独立行政法人 科学技術振興機構 (□□□))

「産学官連携支援データベース」は、国内の大学をはじめとする研究機関・企業・技術移転機関等の行う産学官連携活動を支援することを目的として、産学官連携活動に関わる様々な情報を提供しています。

どなたでも無料で全てのサービスをご利用になれますので是非ご活用下さい。

ホームアドレス 郵便番号 〒 住所 電話番号
融資・保証・リース

政府系金融機関の融資制度

中小企業の皆様が事業に必要な融資を受けることができます。

対象となる方

中小企業者（個人又は法人・組合等で事業を営まれる方）で、一部の業種（金融・保険業等）を除きほとんどの業種の方が対象となります。

支援内容

1. 一般貸付（様々な事業資金に対応しています。）
 - 貸付限度額:
 【中小公庫】4億8,000万円 【国民公庫】4億1,000万円
 【商工中金】特別貸付と合わせて原則1億円（組合）又は1億円（組合員）
 - 貸付利回り:
 【中小公庫】【国民公庫】基準利回比
 【商工中金】貸付対象、貸付期間等によって異なります。
 (注) 中小公庫の一般貸付は平成2年9月末に廃止となります。

2. 特別貸付（政策的に、貸付限度や貸付利回りを優遇します。）
 1. 成長・発展のための資金を融資するチャレンジ融資
 2. 経営環境の変化、経営の再建など一時的な資金需要に対応するセーフティネット・再生融資

<table>
<thead>
<tr>
<th>(:title)チャレンジ融資</th>
<th>(title)セーフティネット・再生融資</th>
</tr>
</thead>
<tbody>
<tr>
<td>・創業、再チャレンジのための初期段階の資金</td>
<td>・経営環境の変化（原材料価格の急騰、金融機関との取引状況の変化、取引先の倒産など）に対応するための一時的な運転資金</td>
</tr>
<tr>
<td>・地域資源活用事業、経営革新、新構想事業、第二創業等新事業展開のための資金</td>
<td>・災害からの復旧資金</td>
</tr>
<tr>
<td>・導入設備導入率を効率化を図るための資金</td>
<td>・経営の再建（自主又は法的再生）のための資金等</td>
</tr>
<tr>
<td>・環境保護（自動車のガス素基準等）に応じた設備等の導入資金等</td>
<td></td>
</tr>
</tbody>
</table>

(注1) 上記の他にも様々な資金ニーズに対応した制度がありますので、詳細は各金融機関にてご相談ください。
(注2) 商工組合中央金融庫においては、短期運転資金（手形割引を含む。）も取り扱っています。

取扱金融機関

中小企業金融公庫、国民生活金融公庫、商工組合中央金融庫、沖縄振興開発金融公庫

ご利用方法

申込時に各機関に必要書類を提出して下さい。
必要書類については各機関にお問い合わせ下さい。

お問い合わせ先

・中小企業金融公庫
 東京相談センター 電話：03-3461-0111
 名古屋相談センター 電話：052-733-6561
 大阪相談センター 電話：06-6211-5555
 福岡相談センター 電話：092-346-6777
 全国各支店：03-3461-0111

・国民生活金融公庫
 東京相談センター 電話：03-3461-0111
 名古屋相談センター 電話：052-733-6561
 大阪相談センター 電話：06-6211-5555
 全国各支店：03-3461-0111

・商工組合中央金融庫
 お客様サービスセンター 電話：03-3461-0111
 全国各支店：03-3461-0111
 沖縄振興開発金融公庫 電話：098-888-8888

(注) 政府系金融機関の再編のため、令和3年1月1日以降の問い合わせ手が変わります。
詳しくは中小企業庁ホームページ（https://www.meitantei.go.jp/）をご覧下さい。
新たな事業活動を支援する融資制度

地域資源（産地の技術、農林水産品、観光資源）を活用した事業活動、経営革新、研究開発した技術の事業化、異分野の中小企業者が柔軟な連携を通じて行う新たな事業活動（新連携）、第二創業等に取り組む方が融資を受けることができます。

対象となる方
（1）地域産業資源活用事業計画に基づく事業を行う方【中小公庫、国民公庫】
（2）異分野連携新事業分野開拓計画（新連携）に参加する方
（3）経営革新計画に基づく事業を行う方
（4）財団法人特定補助金等により研究開発した技術を活用する方【中小公庫のみ】
（5）経営資源再活用計画に基づく事業を行う方【中小公庫のみ】
（6）上記に該当しない方で、第二創業（事業転換、経営多角化）に取り組む方

支援内容
- 貸付限度額：
 【中小公庫】設備資金7億円、運転資金2億円
 【国民公庫】設備資金10億円、運転資金5億円
 【商工中金】設備資金7億円、運転資金2億円
- 貸付利率：貸付対数1.2%、及び5%は特別利率3
- 貸付期間：設備資金10年以内、運転資金7年以内
- 担保・保証条件：担保の全部又は一部を不要とする融資制度、経営者本人の個人保証を免除する制度及び、新創業融資制度及び第三者保証人等を不要とする融資制度が利用可能

取扱金融機関
- 中小企業金融公庫、国民生活金融公庫、商工組合中央金庫、沖縄振興開発金融公庫

ご利用方法
- 申込み時に各機関に必要書類を提出して下さい。
- 必要書類については各機関にお問い合わせ下さい。

お問い合わせ先
- 中小企業金融公庫
 〒101-0052 東京都千代田区丸の内1-1-1 銀行協定ビル4階
- 国民生活金融公庫
 〒101-0051 東京都千代田区丸の内1-1-1 銀行協定ビル2階
- 商工組合中央金庫
 〒112-0032 東京都新宿区西新宿2-9-18 商工組合ビル
 〒101-0051 東京都千代田区丸の内1-1-1 銀行協定ビル2階
- 沖縄振興開発金融公庫
 〒901-0833 沖縄県那覇市中央区中央通1-5-17

新事業創出・活性化融資

高い技術力・ノウハウを持った企業が、新製品・新商品の開発あるいは新たなサービスの提供を行う際、融資を受けることができます。

対象となる方
- 高度または独自の技術・ノウハウを有するベンチャー企業や中堅企業等で、以下の1)から3)のいずれかの事業を行う企業が対象となります。
 1) 新商品の生産、新たなサービスの提供を行う事業
 2) 独自の技術・ノウハウを利用して、商品・サービスの生産・販売・提供の方式を改善する事業
 3) 上記1)、2)の実施のための企業化開発段階以降の技術開発

ただし、技術・サービスの提供方法が、次のア又はイの特徴を満たしている、または満たすことが見込まれる事業であることが必要です。
ア．特許又は実用新案レベル程度の高度性を有すること
イ．市場において独自のものと認められること
サポート内容
【融資限度額】上限はありませんが、通常は対象事業に必要な資金の一定割合となります。
【融資比率】※（-interest rate）
Samples: 以下の新規事業要件（aまたはb）に該当する事業は利息
a 新商品の生産、新たなサービスの提供を行う事業
b 商品、サービスのコスト・品質が著しく改善される事業
【利率】詳細は日本政策投資銀行にお問い合わせ下さい。
【融資期間】事業の収益性、技術開発のテンポなどを総合的に勘案して決定します。
【担保】応相談

ご利用方法
本融資のご利用を申し込まれる場合は、日本政策投資銀行にご相談ください。

お問い合わせ先
日本政策投資銀行
電話：03-xxxxxxx

信用保証制度
金融機関から融資を受ける際、信用保証協会が信用保証を付すことにより、中小企業の皆様の資金調達を行いやすくします。

対象となる方
中小企業者（個人又は法人・組合等で事業を営まれる方）で、一部の業種（農業、林業、漁業、金融・保険業等）を除きほとんどの業種の方が対象となります。

支援内容
中小企業者が金融機関から融資を受ける際、信用保証協会が債務保証をする制度です。
また、使用目的等に応じて各種の特別な信用保証制度もご利用いただけます。

【保証限度額】
・普通保証 2億円以内
・無担保保証 8千万円以内
・無担保保証保証 10千万円以内（納税していること等、一定の要件あり）
なお、各種の特別な保証制度については、保証限度額を引き上げたり、保証限度額を外枠化するなどの措置を受けることができます。
【保証料率】
財務内容その他の経営状況を勘案して、借入金額に対しけおおむね1.6％から1.8％の範囲で各都道府県等の信用保証協会が保証料率を決定します。
なお、「中小企業の会計に関する指針」に沿った財務諸表を作成している場合や担保がある場合は、1.5％程度の割引があります。
（また、セーフティネット保証等の特別の保証制度については、制度ごとに保証料率が決定されます。）

ご利用方法
申込時に金融機関または信用保証協会に必要書類を提出して下さい。
必要書類については各金融機関または各信用保証協会にお問い合わせ下さい。

お問い合わせ先
・（社）全国信用保証協会連合会 電話：03-xxxxxxx
・各都道府県等の信用保証協会 電話：03-xxxxxxx

補助金等／税制
研究開発促進税制
中小企業者等の方が試験研究を実施した場合、税制の特別措置を受けることができます。

対象となる方
青色申告書を提出し、試験研究を行う法人、連結法人または個人
【B：研究開発促進税制】
適用事業年度の試験研究費について、当該企業の試験研究費割合を一定率（H + 試験研究費割合）に相当する額を法人税額（所得税額）から控除します。また、控除限度超過額は要件を満たせば1年間繰越可能です。

国の試験研究機関・大学等との共同研究・委託研究がある場合
【C：特別試験研究税制】
適用事業年度の試験研究費のうち、特別試験研究費（国の試験研究機関・大学等と共同研究、委託研究をして支出した経費等）がある場合には、当該特別試験研究費の額に対する一定率を税額控除します。

なお、適用期間内であれば、恒久的措置であるA〜Cに加えて、DまたはEの措置のいずれかを選択して利用できます。

【D：試験研究費の増加額に係る税額控除制度】
試験研究費の増加額に係る税額控除制度で、当該企業の試験研究費の増加額に対し追加的に5%に相当する額を法人税額（所得税額）から控除します。

【E：売上高に占める割合が50%を超える試験研究費に係る税額控除制度】
試験研究費の総額に係る税額控除制度で、当該企業の試験研究費の額が売上高の50%を超える場合には、追加的に当社の超過額に一定の割合6を乗じた額を法人税額（所得税額）から控除します。

【恒久的措置】

【対象となる費用】
製品の製造または技術の改良、考案もしくは発明に係る試験研究のために要する費用のうち所得の計算面積金に算入される額。具体的には、原材料費・人件費（専門的知識をもって当該研究の業務に専ら従事する者に係るものに限る）・経費、研究の研究の一部として要する委託試験研究費、試験研究用資産の減価償却費等
【次の各項目を満たす者を専門的知識をもって当該研究の業務に専ら従事する者に該当】
(1) 研究者数が研究プロジェクトチームに参加し、全期間でないが担当業務が行われる期間、専属的従事すること
(2) 担当業務が研究者数にかからないものを、専門的知識が当該業務に不可欠であること
(3) 研究期間がトータルとして相当期間（おおよそ1年以上）あること（担当業務がその特殊性から期間的に隔間を置きながら行われる場合はその期間をトータルする）
(4) 担当業務が勤務状況が明確に区分され、担当業務に係る人件費が適正に計算されていること

【手続きの流れ】
確定申告書に必要事項を記載し、法人税額の特別控除に関する明細書等を添付した上で最寄りの税務署に申告してください。なお、税務審査に備えて、特別控除明細書に記入した金額の基になる書類、帳簿類等は保管しておいてください。

【お問い合わせ先】
制度に関する一般的なご相談は、国税局の税務相談室または主税務署に設置している税務相談室で対応しています。
段階的競争選抜技術革新支援事業

対象となる方
提案された研究課題に対し、実用化を視野に入れた研究開発を行うことができる中小企業者。

支援内容
調達を行う国等の機関が中小・ベンチャー企業等からの採用を見込む研究課題に対する提案を広く募集し、2段階の選抜を経て事業化につながる技術の開発を目指します。研究開発活動に取り組む際には、事業化支援を受けることが可能です。

ご利用方法
(1) 独立行政法人新エネルギー・産業技術総合開発機構（室）に対し、計画書を提出、応募。
(2) ①②において、事業内容を審査し、委託先を決定。
(3) 事業完了後、①②にに対し、事業成果を報告。事前調査事業（F/S）については、報告をもとに研究開発事業（R&D）へ進む案件を選抜。

お問い合わせ先
・独立行政法人新エネルギー・産業技術総合開発機構 研究開発推進部
電話：〇〇〇〇-〇〇〇〇
URL：http://www.entei.go.jp
・中小企業庁経営支援部技術課
電話：〇〇〇〇-〇〇〇〇

エコイノベーション推進事業
（エコイノベーション推進・革新的温暖化対策技術発掘プログラム）

対象となる方
民間企業、研究機関、大学法人、一般法人

支援内容
環境重視・人間重視の技術革新・社会革新（エコイノベーション）の実現に資するためのチャレンジングな研究開発に挑戦するテーマや、経済成長と温室効果ガスの排出削減の両方を同時に達成できる技術であって、既存の技術の延長線上では達成困難な世界全体での大幅削減を実現するための革新的な温暖化対策技術テーマについてシーグラフ確認及び実現可能性調査研究を公募します。

（以下の対象テーマ、内容は〇〇〇〇年２月時点での未確定です。詳細はエコイノベーション推進事業のホームページに掲載いたしますので、必ずご確認下さい。）

（対象テーマ）
・シーグラフの受け手側で最大限考慮に入れていくと認められ、潜在的需要を顕在化させる可能性をもつもの
・優れたエネルギー・環境技術や高度なものづくり技術など、日本の強みを発揮できる要素を何らかの形で活用しているもの
・経済成長と温室効果ガスの排出削減の両方を同時に達成するための技術
・〇〇〇〇年までに温室効果ガスの大幅削減を実現する技術
・世界全体で温室効果ガスを削減する技術

（内容）
委託対象：シーグラフ確認調査及び実現可能性調査研究
委託金額：年間〇〇〇〇万円程度（上限〇〇〇〇万円程度）
委託期間：契約日～平成〇〇年３月
募集期間（平成〇〇年度）：平成〇〇年〇月～（予定）
ご利用方法

募集期間、公募要領・申請書様式等詳細については、公募開始日に○○□□技術開発機構のホームページに掲載します。

お問い合わせ先

○○□□技術開発機構 ☎: ☎号
研究開発推進部 イノベーション実用化推進グループ
電話: ☎号 ☎号 ☎号 ☎号

法律等に基づく支援

研究開発型中小企業に対する特許料等の軽減

研究開発に取り組まれている中小企業の皆様が特許を取得する際の審査請求手数料・特許料を半額に軽減します。

対象となる出願
（1）売上高に対する試験研究費等比率が 3％超の中小企業者が行う出願
（2）中小企業新事業活動促進法（廃止前）新事業創出促進法を含む。に基づく中小企業技術革新制度（□□□□）の補助金等交付事業の成果に係る出願
（3）中小企業新事業活動促進法（改正前）中小企業経営革新支援法を含む。に基づく承認経営革新計画における技術に関する研究開発事業の成果に係る出願
（4）中小企業新事業活動促進法に基づく新業分野開拓計画における技術に関する研究開発事業の成果に係る出願
（5）「中小企業のものづくり基盤技術の高度化に関する法律」に基づく認定研究開発等計画に従って行われる研究開発事業の成果に係る出願
○(2)〜(5)については、上記事業（または計画）開始から事業（または計画）終了後 2 年以内の出願に限ります。

支援内容
（1）審査請求手数料の 1/2 軽減
（2）特許料（第 1 年分から第 3 年分）の 1/2 軽減

「中小企業のものづくり基盤技術の高度化に関する法律」に基づく認定計画に従って行われる研究開発の成果については、第 1 年分〜第 6 年分。

ご利用方法

「軽減申請書」+「添付書類」
書面の提出

「確認書」交付

オンラインまたは書面の提出

特許庁

管轄経済局

軽減申請者

出願審査請求書または「特許料納付書」（確認書番号記載）
出願審査請求書を書面で提出した場合、別途電子化手数料がかかります。

お問い合わせ先

＜本制度・手続の詳細（申請様式、必要書類等）＞
「研究開発型中小企業」の項目をご覧下さい。
手続の詳細については軽減申請者が所在地の経済産業局特許局（巻末「問い合わせ先一覧」）制度について下記お問い合わせ先までご連絡下さい。
【(1)〜(4) の軽減制度について】
経済産業省産業技術環境局産業技術政策課（電話：□□□□□□□□□）
【(5) の軽減制度について】
経済産業省経済産業局特許局（電話：□□□□□□□□□）
経済産業省経済産業局経営支援部経営支援課（電話：□□□□□□□□□）
知財駆け込み寺（中小企業知的財産啓発普及事業）
知財駆け込み寺連携事業（出願適正化等指導事業）

中小企業が抱える知的財産に関する課題を解決できるよう、「知財駆け込み寺」では相談内容に応じた各支援（専門）機関の紹介・取次を行います。また、各地で行う各種相談会・セミナー等を通じて経営に生かせる知的財産の情報を提供します。

対象となる方
中小企業者

支援内容
全国の商工会・商工会議所に設置された「知財駆け込み寺」では、相談内容に応じた各支援（専門）機関の紹介・取次を行います。また、知財駆け込み寺連携事業として、知的財産を中核に据えた企業活動の普及を目的とし、各地で開催します。

(1) 相談取次：知的財産に関する相談内容に応じた各支援（専門）機関の紹介・取次を行います。
(2) 相談会開催：弁護士等専門家による個別相談会を開催します。
(3) セミナー：地域のニーズにあたる知的財産に関するセミナーを開催します。
(4) 講師派遣：既存の各種研修会及び経営相談会等への講師・相談員を派遣します。
(5) その他：商工会・商工会議所が開催する知的財産に関する各種イベントを支援します。

(2) (3) の支援は、知財駆け込み寺連携事業です。

小支援（専門）機関
- 特許庁
- 各経済産業局
- 工業所有権情報・研修館
- 発明協会
- 中小機構（中小企業・ベンチャー総合支援センター）
- 日本弁護士連合会
- 都道府県等中小企業支援センター
- 日本弁理士会
- 日本貿易振興機関

利用方法
下記連絡先にお問い合わせください。

中小企業技術革新制度（○○○）に基づく支援

新技術を開発する中小企業者等は、補助金等を受けることができるとともに、その成果を利用した事業活動を行う場合に、特許料の軽減や保証保証に関する枠の拡大などの支援を受けることができます。

対象となる方
新技術に関する研究開発のため補助金・委託費等（特定補助金等）の交付を受けた中小企業者及び事業を皆でない個人

支援内容
(1) 特許料等の軽減
特定補助金等の交付を受けてる研究開発事業の成果に発明特許について特許料等の減免を受けることができます。
地域中小企業知的財産戦略支援事業

経営戦略の一環として、知的財産の戦略的な活用を進めようとする中小企業は専門家の派遣及び外国出願の支援や、情報提供を受けることができます。

①対象となる方
経営戦略の一環として、知的財産戦略的な活用を進めようとする中小企業者

②支援内容
独自の基盤技術を持ち、今後、自ら経営戦略の一環として、知的財産戦略に基づいた事業展開を図って行く中小企業は「知的財産専門家により、知的財産戦略づくりのお手伝いを受ける」及び「戦略的な外国出願への助成を受け」ることができる。

（１）知的財産戦略策定支援事業
都道府県等中小企業支援センターが知的財産専門センターと連携し、地域の中小・ベンチャー企業に対して、知的財産の専門家を一定期間集中的に派遣することにより、企業における知的財産を活用するためのビジネスプランや知的財産戦略づくりを支援します。

（２）地域中小企業外国出願支援事業
都道府県等中小企業支援センターが、地域の中小・ベンチャー企業に対して、特許の外国出願に要した費用に対する助成を行います。

（３）地域における知的財産戦略支援人材の育成事業
法律、技術等の専門家による支援チームを各地域で育成・組織化し、支援チームによる中小企業の知的財産戦略策定の支援事業の蓄積や普及啓発を図ります。

①お問い合わせ先（本項にあわせてお問い合わせ下さい）
（１）（２）各経済産業局等特許室（営業時間内）
特許庁総務部支援課中小企業等支援企画班 電話：（電話番号）（都道府県）
（３）特許庁総務部支援課中小企業等支援企画班 電話：（電話番号）（都道府県）
専門家による相談・アドバイス

1 時許流通アドバイザー

時許流通アドバイザーとは、地方自治体、XXX、経済産業局に派遣され、企業や大学、公的
研究機関等が保有する提供可能な時許技術と、中小・ベンチャー企業等の技術導入に対するニ
ーズを発掘し、両者のマッチングを図ることを目的とした、知的財産権や技術移転に関する豊
富な知識・経験を有する専門人材です。

時許流通アドバイザーの主な活動は、地域中小企業の時許導入ニーズを調査し時許提供者を
探すこと、及び大学・公的研究機関の時許シーズを発掘し、時許導入企業を探すことです。こ
のほか、技術移転のノウハウに関する指導や相談、時許流通データベースへの登録支援等、知
的財産権の活用を中心に幅広い活動を行っています。
（時許流通アドバイザー派遣事業は、独立行政法人工業所有権情報・研修館から社団法人発明協
会への委託事業です。）

＜時許流通アドバイザーに関する問合せ先＞

社団法人発明協会 時許流通促進事業センター 時許流通アドバイザーグループ
☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ 東京都港区虎ノ門丁目番号 第0秋山ビルディング階 ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎

地方自治体への派遣（平成00年00月現在）

<table>
<thead>
<tr>
<th>勤務先</th>
<th>氏名</th>
<th>所在地</th>
</tr>
</thead>
<tbody>
<tr>
<td>北海道時の所有権センター（社）発明協会北海道支部</td>
<td>宮本 朗彦</td>
<td>札幌市北区北10条西3丁目1・2北ビル1階</td>
</tr>
<tr>
<td>青森県時の所有権センター（社）発明協会青森県支部</td>
<td>中山 信司</td>
<td>青森市2番街3丁目0・1・2青森県工業経済研究センター内</td>
</tr>
<tr>
<td>岩手県時の所有権センター</td>
<td>千葉 広喜</td>
<td>盛岡市飯岡新田3・4・5</td>
</tr>
<tr>
<td>秋田県時の所有権センター</td>
<td>桐尾 征広</td>
<td>秋田市山王5・6・7</td>
</tr>
<tr>
<td>宮城県時の所有権センター</td>
<td>森原 美雄</td>
<td>仙台市東区明月町1丁目</td>
</tr>
<tr>
<td>山形県時の所有権センター（社）山形県工業経済総合センター</td>
<td>富嶽 剛雄</td>
<td>山形市松栄2丁目1番地</td>
</tr>
<tr>
<td>（財）山形県産業技術振興機構</td>
<td>佐藤 隆浩</td>
<td>山形県米沢市八幡原</td>
</tr>
<tr>
<td>福島県時の所有権センター（社）発明協会福島県支部</td>
<td>四柳 秀哉</td>
<td>福島市栄町1・2</td>
</tr>
<tr>
<td>茨城県時の所有権センター（社）茨城県工業技術センター</td>
<td>伊藤 哲三</td>
<td>茨城県取手市</td>
</tr>
<tr>
<td>桐生県時の所有権センター（社）発明協会栃木県支部</td>
<td>関根 陽一</td>
<td>栃木県宇都宮市</td>
</tr>
</tbody>
</table>

TEL: ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎
<table>
<thead>
<tr>
<th>氏名</th>
<th>所在地</th>
<th>TEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>蕾藤 幸一</td>
<td>ひたちなか市新光町 3</td>
<td>☎️</td>
</tr>
<tr>
<td>知的財産総合支援センター埼玉central (財)</td>
<td>さいたま市大宮区松木町 0 - 0 - 0</td>
<td>☎️</td>
</tr>
<tr>
<td>知的財産総合支援センター埼玉東 (財)</td>
<td>さいたま市大宮区松木町 0 - 0 - 0</td>
<td>☎️</td>
</tr>
<tr>
<td>千葉県知的財産支援センター (財)</td>
<td>千葉県県産業支援技術研究所内</td>
<td>☎️</td>
</tr>
<tr>
<td>千葉県知的財産支援センター (財)</td>
<td>千葉県県産業支援技術研究所内</td>
<td>☎️</td>
</tr>
<tr>
<td>神奈川県知的財産支援センター (財)</td>
<td>川崎市高津区坂戸 0 - 0 - 0</td>
<td>☎️</td>
</tr>
<tr>
<td>新潟県知的財産支援センター (財)</td>
<td>新潟県産業技術総合センター内</td>
<td>☎️</td>
</tr>
<tr>
<td>長野県知的財産支援センター (財)</td>
<td>長野県工業技術総合センター内</td>
<td>☎️</td>
</tr>
<tr>
<td>山梨県知的財産支援センター (財)</td>
<td>甲府市大津町 10</td>
<td>☎️</td>
</tr>
<tr>
<td>静岡県知的財産支援センター (財)</td>
<td>静岡県県産業技術総合センター内</td>
<td>☎️</td>
</tr>
<tr>
<td>萩原 志之</td>
<td>萩原 志之</td>
<td>☎️</td>
</tr>
<tr>
<td>富山県知的財産支援センター (財)</td>
<td>高岡市二上町 10</td>
<td>☎️</td>
</tr>
<tr>
<td>石川県知的財産支援センター (財)</td>
<td>金沢市駅前通り 10</td>
<td>☎️</td>
</tr>
<tr>
<td>岐阜県知的財産支援センター (財)</td>
<td>大垣市天王寺区天王寺 0 - 0 - 0</td>
<td>☎️</td>
</tr>
<tr>
<td>大阪府立特許情報センター</td>
<td>大阪市天王寺区天王寺 0 - 0 - 0</td>
<td>☎️</td>
</tr>
<tr>
<td>池野 慎</td>
<td>大阪市天王寺区天王寺 0 - 0 - 0</td>
<td>☎️</td>
</tr>
<tr>
<td>和歌山県知的財産支援センター (財)</td>
<td>和歌山市寄合町 10</td>
<td>☎️</td>
</tr>
<tr>
<td>兵庫県工業技術センター (財)</td>
<td>兵庫県役員会議場内</td>
<td>☎️</td>
</tr>
<tr>
<td>京都府知的財産支援センター (財)</td>
<td>京都府役員会議場内</td>
<td>☎️</td>
</tr>
<tr>
<td>滋賀県知的財産支援センター (財)</td>
<td>滋賀県役員会議場内</td>
<td>☎️</td>
</tr>
<tr>
<td>奈良県知的財産支援センター (財)</td>
<td>奈良県役員会議場内</td>
<td>☎️</td>
</tr>
<tr>
<td>島根県知的財産支援センター (財)</td>
<td>松江市北陵町 0 - 0 - 0</td>
<td>☎️</td>
</tr>
<tr>
<td>鳥取県産業技術支援センター (財)</td>
<td>鳥取県役員会議場内</td>
<td>☎️</td>
</tr>
<tr>
<td>勤務先</td>
<td>氏名</td>
<td>所在地</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>(財)ひろしま産業振興機構</td>
<td>豊崎 正弘</td>
<td>広島市中区千田町 0- 0- 00</td>
</tr>
<tr>
<td>岡山県産業総合支援センター(社)</td>
<td>横田 悠造</td>
<td>岡山市南区</td>
</tr>
<tr>
<td>(財)やまぐち産業振興財団</td>
<td>尾山 弥</td>
<td>山口市新野町 0- 0- 00</td>
</tr>
<tr>
<td>香川県産業振興財団</td>
<td>森田 健夫</td>
<td>松山市久美須町</td>
</tr>
<tr>
<td>(財)徳島県産業振興財団</td>
<td>松崎 齊</td>
<td>徳島県徳島町西間</td>
</tr>
<tr>
<td>静岡県産業振興財団</td>
<td>吉本 忠男</td>
<td>静岡市布崎田</td>
</tr>
<tr>
<td>(財)福岡県産業振興センター（財）</td>
<td>金谷 福男</td>
<td>福岡市博多区吉塚本町</td>
</tr>
<tr>
<td>(財)福岡県産業振興センター（財）</td>
<td>沖 宏治</td>
<td>北九州市戸畑区中央新町</td>
</tr>
<tr>
<td>(財)佐賀県産業振興センター（財）</td>
<td>古賀 節遺</td>
<td>佐賀市柳島町</td>
</tr>
<tr>
<td>(財)長崎県産業振興センター（財）</td>
<td>加藤 敏</td>
<td>長崎市池田</td>
</tr>
<tr>
<td>(財)福岡県産業振興センター（財）</td>
<td>坂本 博宣</td>
<td>熊本市東町</td>
</tr>
<tr>
<td>(財)宮崎県産業振興財団</td>
<td>片岡 博信</td>
<td>宮崎市佐土原町</td>
</tr>
<tr>
<td>(財)鹿児島県産業振興センター（財）</td>
<td>麗石 和人</td>
<td>鹿児島市隼人町</td>
</tr>
<tr>
<td>(財)沖縄県産業振興センター（財）</td>
<td>下司 優雄</td>
<td>うるま市学崎</td>
</tr>
</tbody>
</table>

Notes:
- T E L 含む部分が省略されている。
<table>
<thead>
<tr>
<th>勤務先</th>
<th>氏名</th>
<th>所在地</th>
<th>TEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>北海道ティール・エル・オ(株)</td>
<td>吉村 哲隆</td>
<td>〒060-0812 北海道札幌市東区北10条西11丁目1−10</td>
<td>☎️011−666−8888</td>
</tr>
<tr>
<td>(財) 北海道科学技术振興機構</td>
<td>熊谷 昭男</td>
<td>〒060-0812 北海道札幌市中央区寒風通1丁目16−1</td>
<td>☎️011−666−8888</td>
</tr>
<tr>
<td>(株) 東北テクノアーチ</td>
<td>初川 亨治</td>
<td>〒060-0812 北海道札幌市南区寒風通1丁目16−1</td>
<td>☎️011−666−8888</td>
</tr>
<tr>
<td>(株) 東北テクノアーチ</td>
<td>今野 淑治</td>
<td>〒060-0812 北海道札幌市南区寒風通1丁目16−1</td>
<td>☎️011−666−8888</td>
</tr>
<tr>
<td>国立大学法人北海道大学研究・知の財産戦略部</td>
<td>松本 初男</td>
<td>〒060-0812 北海道札幌市南区寒風通1丁目16−1</td>
<td>☎️011−666−8888</td>
</tr>
<tr>
<td>国立大学法人北海道大学研究・知の財産戦略部</td>
<td>金井 努</td>
<td>〒060-0812 北海道札幌市南区寒風通1丁目16−1</td>
<td>☎️011−666−8888</td>
</tr>
<tr>
<td>国立大学法人北海道大学研究・知の財産戦略部</td>
<td>高橋 靖子</td>
<td>〒060-0812 北海道札幌市南区寒風通1丁目16−1</td>
<td>☎️011−666−8888</td>
</tr>
<tr>
<td>(株) キャンバスクリエイツ</td>
<td>河村 芳昭</td>
<td>〒060-0812 北海道札幌市南区寒風通1丁目16−1</td>
<td>☎️011−666−8888</td>
</tr>
<tr>
<td>学校法人慶應義塾大学知の財産センター</td>
<td>高木 弘一</td>
<td>〒060-0812 北海道札幌市南区寒風通1丁目16−1</td>
<td>☎️011−666−8888</td>
</tr>
<tr>
<td>学校法人慶應義塾大学知の財産センター</td>
<td>村上 武夫</td>
<td>〒060-0812 北海道札幌市南区寒風通1丁目16−1</td>
<td>☎️011−666−8888</td>
</tr>
<tr>
<td>学校法人慶應義塾大学知の財産センター</td>
<td>加藤 和宏</td>
<td>〒060-0812 北海道札幌市南区寒風通1丁目16−1</td>
<td>☎️011−666−8888</td>
</tr>
<tr>
<td>学校法人慶應義塾大学知の財産センター</td>
<td>大平 和幸</td>
<td>〒060-0812 北海道札幌市南区寒風通1丁目16−1</td>
<td>☎️011−666−8888</td>
</tr>
<tr>
<td>学校法人慶應義塾大学知の財産センター</td>
<td>中村 一啓</td>
<td>〒060-0812 北海道札幌市南区寒風通1丁目16−1</td>
<td>☎️011−666−8888</td>
</tr>
<tr>
<td>学校法人慶應義塾大学知の財産センター</td>
<td>山本 定弘</td>
<td>〒060-0812 北海道札幌市南区寒風通1丁目16−1</td>
<td>☎️011−666−8888</td>
</tr>
<tr>
<td>学校法人慶應義塾大学知の財産センター</td>
<td>小原 陽</td>
<td>〒060-0812 北海道札幌市南区寒風通1丁目16−1</td>
<td>☎️011−666−8888</td>
</tr>
<tr>
<td>学校法人慶應義塾大学知の財産センター</td>
<td>高木 克己</td>
<td>〒060-0812 北海道札幌市南区寒風通1丁目16−1</td>
<td>☎️011−666−8888</td>
</tr>
<tr>
<td>学校法人慶應義塾大学知の財産センター</td>
<td>高田 誠</td>
<td>〒060-0812 北海道札幌市南区寒風通1丁目16−1</td>
<td>☎️011−666−8888</td>
</tr>
<tr>
<td>(株) 信州</td>
<td>大渕 友</td>
<td>〒380-0812 長野県長野市北2丁目1−16</td>
<td>☎️026−222−8888</td>
</tr>
<tr>
<td>静岡県自然環境環境保護センター</td>
<td>松村 孔一</td>
<td>〒420-0031 静岡県沼津市北区1丁目1−1</td>
<td>☎️054−222−8888</td>
</tr>
<tr>
<td>(社) 静岡県産業活性化協会</td>
<td>多田 正英</td>
<td>〒420-0031 静岡県沼津市北区1丁目1−1</td>
<td>☎️054−222−8888</td>
</tr>
<tr>
<td>(有) 全国大学あ・エ・オ(株)</td>
<td>五十嵐 泰龍</td>
<td>〒333-0001 愛知県名古屋市中区1丁目1−1</td>
<td>☎️052−555−8888</td>
</tr>
<tr>
<td>(財) 名古屋産業科学研究所</td>
<td>大森 茂雄</td>
<td>〒463-8633 名古屋市港区北1丁目1−1</td>
<td>☎️052−555−8888</td>
</tr>
<tr>
<td>(財) 名古屋産業科学研究所</td>
<td>小屋 理夫</td>
<td>〒463-8633 名古屋市港区北1丁目1−1</td>
<td>☎️052−555−8888</td>
</tr>
<tr>
<td>(財) 三菱カーティヤクティブ</td>
<td>杉山 幸一</td>
<td>〒463-8633 名古屋市港区北1丁目1−1</td>
<td>☎️052−555−8888</td>
</tr>
<tr>
<td>(財) 大阪産業振興機構</td>
<td>平松 新</td>
<td>〒543-0031 大阪市中央区北1丁目1−1</td>
<td>☎️06−666−8888</td>
</tr>
<tr>
<td>(財) 新規産業創造機構</td>
<td>井上 良彦</td>
<td>〒543-0031 大阪市中央区北1丁目1−1</td>
<td>☎️06−666−8888</td>
</tr>
<tr>
<td>(財) 新規産業創造機構</td>
<td>岩崎 敏彦</td>
<td>〒543-0031 大阪市中央区北1丁目1−1</td>
<td>☎️06−666−8888</td>
</tr>
<tr>
<td>(財) 関東産業振興機構</td>
<td>上田 文明</td>
<td>〒300-3001 埼玉県所沢市北1丁目1−1</td>
<td>☎️04−700−8888</td>
</tr>
<tr>
<td>(財) ふじみ野産業振興機構</td>
<td>村上 啓治</td>
<td>〒350-0001 ふじみ野市北1丁目1−1</td>
<td>☎️04−700−8888</td>
</tr>
<tr>
<td>(有) 山口サイ・サイ・オ(株)</td>
<td>松崎 徹雄</td>
<td>〒750-0001 山口県岩国市北1丁目1−1</td>
<td>☎️08−900−8888</td>
</tr>
<tr>
<td>(社) 中国地方ビジネスサポート協会</td>
<td>和田木 大</td>
<td>〒754-0001 広島県尾道市北1丁目1−1</td>
<td>☎️082−900−8888</td>
</tr>
<tr>
<td>(財) 北九州産業振興機構</td>
<td>芳田 隆</td>
<td>〒804-0001 北九州市北区北1丁目1−1</td>
<td>☎️093−222−8888</td>
</tr>
<tr>
<td>(財) 産業連携機構九州</td>
<td>榎本 武文</td>
<td>〒810-0001 福岡県北九州市南区北1丁目1−1</td>
<td>☎️092−222−8888</td>
</tr>
<tr>
<td>国立大学法人東北大学</td>
<td>武藤 健一</td>
<td>〒020-8501 仙台市北区北1丁目1−1</td>
<td>☎️022−222−8888</td>
</tr>
<tr>
<td>(財) 九州産業連携機構</td>
<td>二見 博</td>
<td>〒810-0001 福岡県北九州市北区北1丁目1−1</td>
<td>☎️093−222−8888</td>
</tr>
<tr>
<td>(財) 産業連携機構九州</td>
<td>柴田 真司</td>
<td>〒810-0001 福岡県北九州市北区北1丁目1−1</td>
<td>☎️093−222−8888</td>
</tr>
<tr>
<td>(財) 大分産業連携機構</td>
<td>甲斐 徹</td>
<td>〒870-0001 大分市長町北1丁目1−1</td>
<td>☎️097−222−8888</td>
</tr>
<tr>
<td>(財) みやま産業連携機構</td>
<td>高村 昌幸</td>
<td>〒850-0001 宮崎市西区北1丁目1−1</td>
<td>☎️098−222−8888</td>
</tr>
<tr>
<td>(財) 鹿児島産業連携機構</td>
<td>平川 康人</td>
<td>〒890-0001 鹿児島市北区北1丁目1−1</td>
<td>☎️099−222−8888</td>
</tr>
</tbody>
</table>
特許流通データベース
開放特許活用例集

発行
独立行政法人工業所有権情報・研修館
〒104-0065 東京都千代田区霞ヶ関2丁目1番1号 特許庁 電話

執筆担当（五十音順）
有限会社青山技術士事務所
青山 進
シェアリング株式会社
山本 良一
システム・インテグレーション株式会社
秋元 正哉 尾崎 典明
鎌倉 涼子 吉田 邦雄
川田 洋二
市毛 修 石田 正浩
菊池 松人 後藤 和夫
園部 喬 寺嶋 勇
森 俊二 諸角 和則
山口 幸男

本書は、独立行政法人工業所有権情報・研修館の委託により、
財団法人日本特許情報機構が製作したものです。

財団法人日本特許情報機構
情報流通部 特許流通DB管理課
〒104-0065 東京都千代田区霞ヶ関2丁目1番1号 佐藤ダイヤビルディング
電話：03-3841-1111（直通） 03-3841-1111（外線）
独立行政法人 工業所有権情報・研修館

http://www.ryutu.inpit.go.jp/
開放特許活用例集作成事業は、（財）日本特許情報機構が独立行政法人工業所有権情報・研修館から委託を受けて実施する事業です